stm32f407 dma操作spi的程序
时间: 2023-05-25 18:01:13 浏览: 557
对于 stm32f407 的 dma 操作 spi 的程序,一般可以采用以下步骤:
1. 配置 SPI 的时钟、引脚等参数。
2. 配置 DMA 传输的源地址、目的地址以及传输长度等参数。其中,源地址为待传输的数据缓存区,目的地址为 SPI 的发送寄存器地址。
3. 配置 DMA 的传输模式和触发方式。一般可选择循环传输和硬件触发方式,这样可以实现连续不断地传输数据。
4. 启动 DMA 传输,并等待传输完成标志。如果没有设置循环传输模式,则需要在传输完成后再次配置 DMA 相关参数,即进行下一次传输。
下面是一个简单的示例代码,供参考:
```
#include "stm32f4xx.h"
#define BUFFER_SIZE 16
volatile uint8_t txBuffer[BUFFER_SIZE] = {0x01, 0x02, 0x03, 0x04, 0x05, 0x06, 0x07, 0x08, 0x09, 0x0A, 0x0B, 0x0C, 0x0D, 0x0E, 0x0F, 0x10};
volatile uint8_t rxBuffer[BUFFER_SIZE];
void initSPI(void)
{
GPIO_InitTypeDef GPIO_InitStructure;
SPI_InitTypeDef SPI_InitStructure;
/* Enable GPIO clock */
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_GPIOA, ENABLE);
/* Enable SPI clock */
RCC_APB2PeriphClockCmd(RCC_APB2Periph_SPI1, ENABLE);
/* Configure GPIO pin */
GPIO_InitStructure.GPIO_Pin = GPIO_Pin_5 | GPIO_Pin_6 | GPIO_Pin_7;
GPIO_InitStructure.GPIO_Mode = GPIO_Mode_AF;
GPIO_InitStructure.GPIO_Speed = GPIO_Speed_50MHz;
GPIO_InitStructure.GPIO_OType = GPIO_OType_PP;
GPIO_InitStructure.GPIO_PuPd = GPIO_PuPd_UP;
GPIO_Init(GPIOA, &GPIO_InitStructure);
/* Connect GPIO pin to SPI peripheral */
GPIO_PinAFConfig(GPIOA, GPIO_PinSource5, GPIO_AF_SPI1);
GPIO_PinAFConfig(GPIOA, GPIO_PinSource6, GPIO_AF_SPI1);
GPIO_PinAFConfig(GPIOA, GPIO_PinSource7, GPIO_AF_SPI1);
/* Configure SPI */
SPI_I2S_DeInit(SPI1);
SPI_InitStructure.SPI_Direction = SPI_Direction_2Lines_FullDuplex;
SPI_InitStructure.SPI_Mode = SPI_Mode_Master;
SPI_InitStructure.SPI_DataSize = SPI_DataSize_8b;
SPI_InitStructure.SPI_CPOL = SPI_CPOL_High;
SPI_InitStructure.SPI_CPHA = SPI_CPHA_2Edge;
SPI_InitStructure.SPI_NSS = SPI_NSS_Soft;
SPI_InitStructure.SPI_BaudRatePrescaler = SPI_BaudRatePrescaler_16;
SPI_InitStructure.SPI_FirstBit = SPI_FirstBit_MSB;
SPI_Init(SPI1, &SPI_InitStructure);
/* Enable SPI */
SPI_Cmd(SPI1, ENABLE);
}
void initDMA(void)
{
DMA_InitTypeDef DMA_InitStructure;
/* Enable DMA clock */
RCC_AHB1PeriphClockCmd(RCC_AHB1Periph_DMA2, ENABLE);
/* Configure DMA */
DMA_DeInit(DMA2_Stream3);
DMA_InitStructure.DMA_Channel = DMA_Channel_3;
DMA_InitStructure.DMA_PeripheralBaseAddr = (uint32_t)&(SPI1->DR);
DMA_InitStructure.DMA_Memory0BaseAddr = (uint32_t)txBuffer;
DMA_InitStructure.DMA_DIR = DMA_DIR_MemoryToPeripheral;
DMA_InitStructure.DMA_BufferSize = BUFFER_SIZE;
DMA_InitStructure.DMA_PeripheralInc = DMA_PeripheralInc_Disable;
DMA_InitStructure.DMA_MemoryInc = DMA_MemoryInc_Enable;
DMA_InitStructure.DMA_PeripheralDataSize = DMA_PeripheralDataSize_Byte;
DMA_InitStructure.DMA_MemoryDataSize = DMA_MemoryDataSize_Byte;
DMA_InitStructure.DMA_Mode = DMA_Mode_Normal;
DMA_InitStructure.DMA_Priority = DMA_Priority_High;
DMA_InitStructure.DMA_FIFOMode = DMA_FIFOMode_Disable;
DMA_InitStructure.DMA_FIFOThreshold = DMA_FIFOThreshold_HalfFull;
DMA_InitStructure.DMA_MemoryBurst = DMA_MemoryBurst_Single;
DMA_InitStructure.DMA_PeripheralBurst = DMA_PeripheralBurst_Single;
DMA_Init(DMA2_Stream3, &DMA_InitStructure);
/* Enable DMA IRQ */
NVIC_InitTypeDef NVIC_InitStructure;
NVIC_InitStructure.NVIC_IRQChannel = DMA2_Stream3_IRQn;
NVIC_InitStructure.NVIC_IRQChannelPreemptionPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelSubPriority = 0;
NVIC_InitStructure.NVIC_IRQChannelCmd = ENABLE;
NVIC_Init(&NVIC_InitStructure);
/* Enable DMA transfer complete interrupt */
DMA_ITConfig(DMA2_Stream3, DMA_IT_TC, ENABLE);
}
void startDMA(void)
{
/* Enable DMA */
DMA_Cmd(DMA2_Stream3, ENABLE);
while(DMA_GetFlagStatus(DMA2_Stream3, DMA_FLAG_TCIF3) == RESET);
/* Disable DMA */
DMA_Cmd(DMA2_Stream3, DISABLE);
}
void DMA2_Stream3_IRQHandler(void)
{
if(DMA_GetITStatus(DMA2_Stream3, DMA_IT_TC) != RESET)
{
DMA_ClearITPendingBit(DMA2_Stream3, DMA_IT_TC);
/* Disable DMA */
DMA_Cmd(DMA2_Stream3, DISABLE);
/* SPI receive */
for(int i = 0; i < BUFFER_SIZE; i++)
{
/* Wait for SPI transmit buffer empty */
while(SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_TXE) == RESET);
/* Send dummy byte to trigger SPI clock */
SPI_I2S_SendData(SPI1, 0xFF);
/* Wait for SPI receive buffer not empty */
while(SPI_I2S_GetFlagStatus(SPI1, SPI_I2S_FLAG_RXNE) == RESET);
/* Receive data */
rxBuffer[i] = SPI_I2S_ReceiveData(SPI1);
}
}
}
int main(void)
{
initSPI();
initDMA();
while(1)
{
/* Start DMA transfer */
startDMA();
}
}
```
在这个示例代码中,我们首先定义了两个缓存区:txBuffer 和 rxBuffer,分别用于存放待发送和接收的数据。在 initSPI 中,我们配置了 PA5~PA7 三个引脚为 SPI 端口,以及 SPI 的工作模式、时钟分频等参数。在 initDMA 中,我们使用了 DMA2 的 Stream3,配置了 DMA 的源地址、目的地址、传输长度等参数,以及传输完成后所需执行的中断服务程序。在 startDMA 中,我们启动 DMA 传输,并等待传输完成标志。当 DMA 传输完成时,DMA2_Stream3_IRQHandler 中的中断服务程序将启动 SPI 的接收过程,接收到的数据将存放在 rxBuffer 中。最后,我们不断地循环执行 startDMA,以便进行连续的数据传输。
阅读全文