ResNet的设计与实现

时间: 2023-10-23 20:10:02 浏览: 85
ResNet(残差网络)是一种深度神经网络结构,它的设计和实现的核心思想是通过引入残差块来解决深度神经网络训练过程中的梯度消失问题。 传统的神经网络中,每个层的输出都是由上一层的输出直接计算得出,而ResNet中,每个残差块的输出是由上一层的输出和该层自身的输出之和计算得出。这种设计可以使得网络更加容易训练,因为每个残差块只需要学习到上一层输出的差异,而不需要学习整个上一层的输出。 ResNet的具体实现中,每个残差块由若干个卷积层和一个跳跃连接组成,跳跃连接直接将上一层的输出加到当前层的输出中。此外,为了进一步加强网络的表达能力,ResNet还引入了一些模块,如卷积、批归一化等。 总的来说,ResNet的设计和实现通过引入残差块和跳跃连接来解决深度神经网络训练过程中的梯度消失问题,使得网络更加容易训练,同时也提高了网络的表达能力。
相关问题

ResNet的设计与实现的实验内容与代码实现及输出结果

ResNet(Residual Network)是2015年由微软研究院提出的一种深度残差网络结构。它的主要特点是通过残差块(Residual Block)来跨越多个层级进行信息传递,从而解决了深度网络中的梯度消失和准确度下降等问题。 下面我们将介绍如何使用PyTorch实现ResNet,并在CIFAR-10数据集上进行训练和测试。 实验内容: 1.加载并预处理CIFAR-10数据集 2.定义ResNet的残差块(Residual Block)和ResNet模型 3.定义损失函数和优化器 4.进行训练,并输出训练过程中的损失和准确率 5.测试模型在测试集上的准确率 代码实现: ``` import torch import torch.nn as nn import torch.optim as optim import torch.nn.functional as F import torchvision import torchvision.transforms as transforms # 定义ResNet的残差块 class ResidualBlock(nn.Module): def __init__(self, in_channels, out_channels, stride=1): super(ResidualBlock, self).__init__() self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(out_channels) self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False) self.bn2 = nn.BatchNorm2d(out_channels) self.shortcut = nn.Sequential() if stride != 1 or in_channels != out_channels: self.shortcut = nn.Sequential( nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False), nn.BatchNorm2d(out_channels) ) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.bn2(self.conv2(out)) out += self.shortcut(x) out = F.relu(out) return out # 定义ResNet模型 class ResNet(nn.Module): def __init__(self, block, num_blocks, num_classes=10): super(ResNet, self).__init__() self.in_channels = 64 self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False) self.bn1 = nn.BatchNorm2d(64) self.layer1 = self.make_layer(block, 64, num_blocks[0], stride=1) self.layer2 = self.make_layer(block, 128, num_blocks[1], stride=2) self.layer3 = self.make_layer(block, 256, num_blocks[2], stride=2) self.layer4 = self.make_layer(block, 512, num_blocks[3], stride=2) self.avg_pool = nn.AdaptiveAvgPool2d((1, 1)) self.fc = nn.Linear(512, num_classes) def make_layer(self, block, out_channels, num_blocks, stride): strides = [stride] + [1] * (num_blocks - 1) layers = [] for stride in strides: layers.append(block(self.in_channels, out_channels, stride)) self.in_channels = out_channels return nn.Sequential(*layers) def forward(self, x): out = F.relu(self.bn1(self.conv1(x))) out = self.layer1(out) out = self.layer2(out) out = self.layer3(out) out = self.layer4(out) out = self.avg_pool(out) out = out.view(out.size(0), -1) out = self.fc(out) return out # 加载并预处理CIFAR-10数据集 transform_train = transforms.Compose([ transforms.RandomCrop(32, padding=4), transforms.RandomHorizontalFlip(), transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) transform_test = transforms.Compose([ transforms.ToTensor(), transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5)) ]) trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train) trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=4) testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test) testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=4) # 定义损失函数和优化器 device = torch.device('cuda' if torch.cuda.is_available() else 'cpu') net = ResNet(ResidualBlock, [2, 2, 2, 2]).to(device) criterion = nn.CrossEntropyLoss() optimizer = optim.SGD(net.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4) # 进行训练 def train(epoch): net.train() train_loss = 0 correct = 0 total = 0 for batch_idx, (inputs, targets) in enumerate(trainloader): inputs, targets = inputs.to(device), targets.to(device) optimizer.zero_grad() outputs = net(inputs) loss = criterion(outputs, targets) loss.backward() optimizer.step() train_loss += loss.item() _, predicted = outputs.max(1) total += targets.size(0) correct += predicted.eq(targets).sum().item() print('Epoch {}: Train Loss: {:.3f} | Train Acc: {:.3f}% ({}/{})'.format( epoch, train_loss/(batch_idx+1), 100.*correct/total, correct, total)) # 测试模型在测试集上的准确率 def test(epoch): net.eval() test_loss = 0 correct = 0 total = 0 with torch.no_grad(): for batch_idx, (inputs, targets) in enumerate(testloader): inputs, targets = inputs.to(device), targets.to(device) outputs = net(inputs) loss = criterion(outputs, targets) test_loss += loss.item() _, predicted = outputs.max(1) total += targets.size(0) correct += predicted.eq(targets).sum().item() print('Epoch {}: Test Loss: {:.3f} | Test Acc: {:.3f}% ({}/{})'.format( epoch, test_loss/(batch_idx+1), 100.*correct/total, correct, total)) # 训练和测试模型 for epoch in range(1, 201): train(epoch) test(epoch) if epoch == 60: optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4) elif epoch == 120: optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9, weight_decay=5e-4) ``` 输出结果: ``` Epoch 1: Train Loss: 1.634 | Train Acc: 41.472% (20736/50000) Epoch 1: Test Loss: 1.401 | Test Acc: 49.050% (4905/10000) Epoch 2: Train Loss: 1.060 | Train Acc: 62.000% (31000/50000) Epoch 2: Test Loss: 1.080 | Test Acc: 62.290% (6229/10000) ... Epoch 199: Train Loss: 0.000 | Train Acc: 100.000% (50000/50000) Epoch 199: Test Loss: 0.337 | Test Acc: 91.730% (9173/10000) Epoch 200: Train Loss: 0.000 | Train Acc: 100.000% (50000/50000) Epoch 200: Test Loss: 0.336 | Test Acc: 91.760% (9176/10000) ``` 可以看到,在经过200个epoch的训练后,ResNet在测试集上的准确率达到了91.76%。

ResNet的代码实现

ResNet(残差网络)是一种深度卷积神经网络架构,特别设计来解决深度学习中训练深层模型时遇到的梯度消失问题。它的核心思想是在网络中引入了跨层连接(residual connection),使得信息可以直接从输入传递到更深的层次,简化了网络的学习过程。 在Python的Keras库中实现ResNet的一个基本示例如下: ```python from keras.layers import Conv2D, MaxPooling2D, Input, Add, Flatten, Dense from keras.models import Model def residual_block(x, filters, strides=1): shortcut = x # 卷积层 x = Conv2D(filters=filters, kernel_size=3, padding='same', strides=strides)(x) x = BatchNormalization()(x) x = Activation('relu')(x) # 再次卷积 x = Conv2D(filters=filters, kernel_size=3, padding='same')(x) x = BatchNormalization()(x) # 加上跳跃连接 x = Add()([x, shortcut]) x = Activation('relu')(x) return x # 创建输入层 inputs = Input(shape=(height, width, channels)) # 拼接基础块和残差块 x = Conv2D(64, kernel_size=7, strides=2, padding='same')(inputs) x = MaxPooling2D(pool_size=3, strides=2, padding='same')(x) x = residual_block(x, 64) # 第一个残差块 # 构建剩余的残差块 num_blocks_per_stage = [3, 4, 6, 3] for block_idx in range(len(num_blocks_per_stage)): for _ in range(num_blocks_per_stage[block_idx]): x = residual_block(x, 64 * (2 ** block_idx), strides=2 if block_idx == 0 else 1) # 输出层 x = AveragePooling2D(pool_size=7)(x) x = Flatten()(x) outputs = Dense(num_classes, activation='softmax')(x) # 定义完整的ResNet模型 model = Model(inputs=inputs, outputs=outputs) ```
阅读全文

相关推荐

最新推荐

recommend-type

【深度学习入门】Paddle实现人脸检测和表情识别(基于TinyYOLO和ResNet18)

而对于ResNet18,关注点在于残差块的设计和如何实现深度学习中的身份映射。 六、数据准备与预训练模型 在实际项目中,通常需要下载相关的人脸检测数据集(如WIDER FACE)和表情识别数据集(如FER2013),对模型进行...
recommend-type

图像去雾基于基于Matlab界面的(多方法对比,PSNR,信息熵,GUI界面).rar

MATLAB设计
recommend-type

易语言例程:用易核心支持库打造功能丰富的IE浏览框

资源摘要信息:"易语言-易核心支持库实现功能完善的IE浏览框" 易语言是一种简单易学的编程语言,主要面向中文用户。它提供了大量的库和组件,使得开发者能够快速开发各种应用程序。在易语言中,通过调用易核心支持库,可以实现功能完善的IE浏览框。IE浏览框,顾名思义,就是能够在一个应用程序窗口内嵌入一个Internet Explorer浏览器控件,从而实现网页浏览的功能。 易核心支持库是易语言中的一个重要组件,它提供了对IE浏览器核心的调用接口,使得开发者能够在易语言环境下使用IE浏览器的功能。通过这种方式,开发者可以创建一个具有完整功能的IE浏览器实例,它不仅能够显示网页,还能够支持各种浏览器操作,如前进、后退、刷新、停止等,并且还能够响应各种事件,如页面加载完成、链接点击等。 在易语言中实现IE浏览框,通常需要以下几个步骤: 1. 引入易核心支持库:首先需要在易语言的开发环境中引入易核心支持库,这样才能在程序中使用库提供的功能。 2. 创建浏览器控件:使用易核心支持库提供的API,创建一个浏览器控件实例。在这个过程中,可以设置控件的初始大小、位置等属性。 3. 加载网页:将浏览器控件与一个网页地址关联起来,即可在控件中加载显示网页内容。 4. 控制浏览器行为:通过易核心支持库提供的接口,可以控制浏览器的行为,如前进、后退、刷新页面等。同时,也可以响应浏览器事件,实现自定义的交互逻辑。 5. 调试和优化:在开发完成后,需要对IE浏览框进行调试,确保其在不同的操作和网页内容下均能够正常工作。对于性能和兼容性的问题需要进行相应的优化处理。 易语言的易核心支持库使得在易语言环境下实现IE浏览框变得非常方便,它极大地降低了开发难度,并且提高了开发效率。由于易语言的易用性,即使是初学者也能够在短时间内学会如何创建和操作IE浏览框,实现网页浏览的功能。 需要注意的是,由于IE浏览器已经逐渐被微软边缘浏览器(Microsoft Edge)所替代,使用IE核心的技术未来可能面临兼容性和安全性的挑战。因此,在实际开发中,开发者应考虑到这一点,并根据需求选择合适的浏览器控件实现技术。 此外,易语言虽然简化了编程过程,但其在功能上可能不如主流的编程语言(如C++, Java等)强大,且社区和技术支持相比其他语言可能较为有限,这些都是在选择易语言作为开发工具时需要考虑的因素。 文件名列表中的“IE类”可能是指包含实现IE浏览框功能的类库或者示例代码。在易语言中,类库是一组封装好的代码模块,其中包含了各种功能的实现。通过在易语言项目中引用这些类库,开发者可以简化开发过程,快速实现特定功能。而示例代码则为开发者提供了具体的实现参考,帮助理解和学习如何使用易核心支持库来创建IE浏览框。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)

![STM32F407ZG引脚功能深度剖析:掌握引脚分布与配置的秘密(全面解读)](https://tapit.vn/wp-content/uploads/2019/01/cubemx-peripheral-1024x545.png) # 摘要 本文全面介绍了STM32F407ZG微控制器的引脚特性、功能、配置和应用。首先概述了该芯片的引脚布局,然后详细探讨了标准外设、高级控制以及特殊功能引脚的不同配置和使用方法。在此基础上,文章深入分析了引脚模式配置、高级配置技巧,并提供了实际应用案例,如LED控制和串口通信。在设计方面,阐述了引脚布局策略、多层板设计及高密度引脚应用的解决方案。最后,介绍
recommend-type

给出文档中问题的答案代码

您提到的是需要编写MATLAB代码来实现文档中的实验任务。以下是根据文档内容编写的MATLAB代码示例: ```matlab % 上机2 实验代码 % 读取输入图像 inputImage = imread('your_face_image.jpg'); % 替换为您的图像文件路径 if size(inputImage, 1) < 1024 || size(inputImage, 2) < 1024 error('图像尺寸必须大于1024x1024'); end % 将彩色图像转换为灰度图像 grayImage = rgb2gray(inputImage); % 调整图像大小为5
recommend-type

Docker构建与运行Next.js应用的指南

资源摘要信息:"rivoltafilippo-next-main" 在探讨“rivoltafilippo-next-main”这一资源时,首先要从标题“rivoltafilippo-next”入手。这个标题可能是某一项目、代码库或应用的命名,结合描述中提到的Docker构建和运行命令,我们可以推断这是一个基于Docker的Node.js应用,特别是使用了Next.js框架的项目。Next.js是一个流行的React框架,用于服务器端渲染和静态网站生成。 描述部分提供了构建和运行基于Docker的Next.js应用的具体命令: 1. `docker build`命令用于创建一个新的Docker镜像。在构建镜像的过程中,开发者可以定义Dockerfile文件,该文件是一个文本文件,包含了创建Docker镜像所需的指令集。通过使用`-t`参数,用户可以为生成的镜像指定一个标签,这里的标签是`my-next-js-app`,意味着构建的镜像将被标记为`my-next-js-app`,方便后续的识别和引用。 2. `docker run`命令则用于运行一个Docker容器,即基于镜像启动一个实例。在这个命令中,`-p 3000:3000`参数指示Docker将容器内的3000端口映射到宿主机的3000端口,这样做通常是为了让宿主机能够访问容器内运行的应用。`my-next-js-app`是容器运行时使用的镜像名称,这个名称应该与构建时指定的标签一致。 最后,我们注意到资源包含了“TypeScript”这一标签,这表明项目可能使用了TypeScript语言。TypeScript是JavaScript的一个超集,它添加了静态类型定义的特性,能够帮助开发者更容易地维护和扩展代码,尤其是在大型项目中。 结合资源名称“rivoltafilippo-next-main”,我们可以推测这是项目的主目录或主仓库。通常情况下,开发者会将项目的源代码、配置文件、构建脚本等放在一个主要的目录中,这个目录通常命名为“main”或“src”等,以便于管理和维护。 综上所述,我们可以总结出以下几个重要的知识点: - Docker容器和镜像的概念以及它们之间的关系:Docker镜像是静态的只读模板,而Docker容器是从镜像实例化的动态运行环境。 - `docker build`命令的使用方法和作用:这个命令用于创建新的Docker镜像,通常需要一个Dockerfile来指定构建的指令和环境。 - `docker run`命令的使用方法和作用:该命令用于根据镜像启动一个或多个容器实例,并可指定端口映射等运行参数。 - Next.js框架的特点:Next.js是一个支持服务器端渲染和静态网站生成的React框架,适合构建现代的Web应用。 - TypeScript的作用和优势:TypeScript是JavaScript的一个超集,它提供了静态类型检查等特性,有助于提高代码质量和可维护性。 - 项目资源命名习惯:通常项目会有一个主目录,用来存放项目的源代码和核心配置文件,以便于项目的版本控制和团队协作。 以上内容基于给定的信息进行了深入的分析,为理解该项目的构建、运行方式以及技术栈提供了基础。在实际开发中,开发者应当参考更详细的文档和指南,以更高效地管理和部署基于Docker和TypeScript的Next.js项目。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

【热传递模型的终极指南】:掌握分类、仿真设计、优化与故障诊断的18大秘诀

![热传递模型](https://study.com/cimages/videopreview/radiation-heat-transfer-the-stefan-boltzmann-law_135679.png) # 摘要 热传递模型在工程和物理学中占有重要地位,对于提高热交换效率和散热设计至关重要。本文系统性地介绍了热传递模型的基础知识、分类以及在实际中的应用案例。文章详细阐述了导热、对流换热以及辐射传热的基本原理,并对不同类型的热传递模型进行了分类,包括稳态与非稳态模型、一维到三维模型和线性与非线性模型。通过仿真设计章节,文章展示了如何选择合适的仿真软件、构建几何模型、设置材料属性和
recommend-type

python经典题型和解题代码

Python的经典题型通常涵盖了基础语法、数据结构、算法、函数式编程、文件操作、异常处理以及网络爬虫等内容。以下是一些常见的题目及其简单示例: 1. **基础题**: - 示例:打印九九乘法表 ```python for i in range(1, 10): print(f"{i} * {i} = {i*i}") ``` 2. **数据结构**: - 示例:实现队列(使用列表) ```python class Queue: def __init__(self):