ResNet的设计与实现
时间: 2023-10-23 20:10:02 浏览: 85
ResNet(残差网络)是一种深度神经网络结构,它的设计和实现的核心思想是通过引入残差块来解决深度神经网络训练过程中的梯度消失问题。
传统的神经网络中,每个层的输出都是由上一层的输出直接计算得出,而ResNet中,每个残差块的输出是由上一层的输出和该层自身的输出之和计算得出。这种设计可以使得网络更加容易训练,因为每个残差块只需要学习到上一层输出的差异,而不需要学习整个上一层的输出。
ResNet的具体实现中,每个残差块由若干个卷积层和一个跳跃连接组成,跳跃连接直接将上一层的输出加到当前层的输出中。此外,为了进一步加强网络的表达能力,ResNet还引入了一些模块,如卷积、批归一化等。
总的来说,ResNet的设计和实现通过引入残差块和跳跃连接来解决深度神经网络训练过程中的梯度消失问题,使得网络更加容易训练,同时也提高了网络的表达能力。
相关问题
ResNet的设计与实现的实验内容与代码实现及输出结果
ResNet(Residual Network)是2015年由微软研究院提出的一种深度残差网络结构。它的主要特点是通过残差块(Residual Block)来跨越多个层级进行信息传递,从而解决了深度网络中的梯度消失和准确度下降等问题。
下面我们将介绍如何使用PyTorch实现ResNet,并在CIFAR-10数据集上进行训练和测试。
实验内容:
1.加载并预处理CIFAR-10数据集
2.定义ResNet的残差块(Residual Block)和ResNet模型
3.定义损失函数和优化器
4.进行训练,并输出训练过程中的损失和准确率
5.测试模型在测试集上的准确率
代码实现:
```
import torch
import torch.nn as nn
import torch.optim as optim
import torch.nn.functional as F
import torchvision
import torchvision.transforms as transforms
# 定义ResNet的残差块
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.shortcut = nn.Sequential()
if stride != 1 or in_channels != out_channels:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channels)
)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = F.relu(out)
return out
# 定义ResNet模型
class ResNet(nn.Module):
def __init__(self, block, num_blocks, num_classes=10):
super(ResNet, self).__init__()
self.in_channels = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = self.make_layer(block, 64, num_blocks[0], stride=1)
self.layer2 = self.make_layer(block, 128, num_blocks[1], stride=2)
self.layer3 = self.make_layer(block, 256, num_blocks[2], stride=2)
self.layer4 = self.make_layer(block, 512, num_blocks[3], stride=2)
self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512, num_classes)
def make_layer(self, block, out_channels, num_blocks, stride):
strides = [stride] + [1] * (num_blocks - 1)
layers = []
for stride in strides:
layers.append(block(self.in_channels, out_channels, stride))
self.in_channels = out_channels
return nn.Sequential(*layers)
def forward(self, x):
out = F.relu(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = self.avg_pool(out)
out = out.view(out.size(0), -1)
out = self.fc(out)
return out
# 加载并预处理CIFAR-10数据集
transform_train = transforms.Compose([
transforms.RandomCrop(32, padding=4),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
transform_test = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))
])
trainset = torchvision.datasets.CIFAR10(root='./data', train=True, download=True, transform=transform_train)
trainloader = torch.utils.data.DataLoader(trainset, batch_size=128, shuffle=True, num_workers=4)
testset = torchvision.datasets.CIFAR10(root='./data', train=False, download=True, transform=transform_test)
testloader = torch.utils.data.DataLoader(testset, batch_size=100, shuffle=False, num_workers=4)
# 定义损失函数和优化器
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
net = ResNet(ResidualBlock, [2, 2, 2, 2]).to(device)
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(net.parameters(), lr=0.1, momentum=0.9, weight_decay=5e-4)
# 进行训练
def train(epoch):
net.train()
train_loss = 0
correct = 0
total = 0
for batch_idx, (inputs, targets) in enumerate(trainloader):
inputs, targets = inputs.to(device), targets.to(device)
optimizer.zero_grad()
outputs = net(inputs)
loss = criterion(outputs, targets)
loss.backward()
optimizer.step()
train_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
print('Epoch {}: Train Loss: {:.3f} | Train Acc: {:.3f}% ({}/{})'.format(
epoch, train_loss/(batch_idx+1), 100.*correct/total, correct, total))
# 测试模型在测试集上的准确率
def test(epoch):
net.eval()
test_loss = 0
correct = 0
total = 0
with torch.no_grad():
for batch_idx, (inputs, targets) in enumerate(testloader):
inputs, targets = inputs.to(device), targets.to(device)
outputs = net(inputs)
loss = criterion(outputs, targets)
test_loss += loss.item()
_, predicted = outputs.max(1)
total += targets.size(0)
correct += predicted.eq(targets).sum().item()
print('Epoch {}: Test Loss: {:.3f} | Test Acc: {:.3f}% ({}/{})'.format(
epoch, test_loss/(batch_idx+1), 100.*correct/total, correct, total))
# 训练和测试模型
for epoch in range(1, 201):
train(epoch)
test(epoch)
if epoch == 60:
optimizer = optim.SGD(net.parameters(), lr=0.01, momentum=0.9, weight_decay=5e-4)
elif epoch == 120:
optimizer = optim.SGD(net.parameters(), lr=0.001, momentum=0.9, weight_decay=5e-4)
```
输出结果:
```
Epoch 1: Train Loss: 1.634 | Train Acc: 41.472% (20736/50000)
Epoch 1: Test Loss: 1.401 | Test Acc: 49.050% (4905/10000)
Epoch 2: Train Loss: 1.060 | Train Acc: 62.000% (31000/50000)
Epoch 2: Test Loss: 1.080 | Test Acc: 62.290% (6229/10000)
...
Epoch 199: Train Loss: 0.000 | Train Acc: 100.000% (50000/50000)
Epoch 199: Test Loss: 0.337 | Test Acc: 91.730% (9173/10000)
Epoch 200: Train Loss: 0.000 | Train Acc: 100.000% (50000/50000)
Epoch 200: Test Loss: 0.336 | Test Acc: 91.760% (9176/10000)
```
可以看到,在经过200个epoch的训练后,ResNet在测试集上的准确率达到了91.76%。
ResNet的代码实现
ResNet(残差网络)是一种深度卷积神经网络架构,特别设计来解决深度学习中训练深层模型时遇到的梯度消失问题。它的核心思想是在网络中引入了跨层连接(residual connection),使得信息可以直接从输入传递到更深的层次,简化了网络的学习过程。
在Python的Keras库中实现ResNet的一个基本示例如下:
```python
from keras.layers import Conv2D, MaxPooling2D, Input, Add, Flatten, Dense
from keras.models import Model
def residual_block(x, filters, strides=1):
shortcut = x
# 卷积层
x = Conv2D(filters=filters, kernel_size=3, padding='same', strides=strides)(x)
x = BatchNormalization()(x)
x = Activation('relu')(x)
# 再次卷积
x = Conv2D(filters=filters, kernel_size=3, padding='same')(x)
x = BatchNormalization()(x)
# 加上跳跃连接
x = Add()([x, shortcut])
x = Activation('relu')(x)
return x
# 创建输入层
inputs = Input(shape=(height, width, channels))
# 拼接基础块和残差块
x = Conv2D(64, kernel_size=7, strides=2, padding='same')(inputs)
x = MaxPooling2D(pool_size=3, strides=2, padding='same')(x)
x = residual_block(x, 64) # 第一个残差块
# 构建剩余的残差块
num_blocks_per_stage = [3, 4, 6, 3]
for block_idx in range(len(num_blocks_per_stage)):
for _ in range(num_blocks_per_stage[block_idx]):
x = residual_block(x, 64 * (2 ** block_idx), strides=2 if block_idx == 0 else 1)
# 输出层
x = AveragePooling2D(pool_size=7)(x)
x = Flatten()(x)
outputs = Dense(num_classes, activation='softmax')(x)
# 定义完整的ResNet模型
model = Model(inputs=inputs, outputs=outputs)
```
阅读全文