transformer机器翻译代码
时间: 2023-09-14 18:03:39 浏览: 193
以下是使用PyTorch实现Transformer模型进行机器翻译的代码示例:
```python
import torch
import torch.nn as nn
import torch.nn.functional as F
class PositionalEncoding(nn.Module):
def __init__(self, d_model, dropout=0.1, max_len=5000):
super(PositionalEncoding, self).__init__()
self.dropout = nn.Dropout(p=dropout)
pe = torch.zeros(max_len, d_model)
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-math.log(10000.0) / d_model))
pe[:, 0::2] = torch.sin(position * div_term)
pe[:, 1::2] = torch.cos(position * div_term)
pe = pe.unsqueeze(0).transpose(0, 1)
self.register_buffer('pe', pe)
def forward(self, x):
x = x + self.pe[:x.size(0), :]
return self.dropout(x)
class Transformer(nn.Module):
def __init__(self, src_vocab_size, tgt_vocab_size, d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward, dropout=0.1):
super(Transformer, self).__init__()
self.d_model = d_model
self.embedding_src = nn.Embedding(src_vocab_size, d_model)
self.embedding_tgt = nn.Embedding(tgt_vocab_size, d_model)
self.pos_encoder = PositionalEncoding(d_model, dropout)
encoder_layer = nn.TransformerEncoderLayer(d_model, nhead, dim_feedforward, dropout)
encoder_norm = nn.LayerNorm(d_model)
self.encoder = nn.TransformerEncoder(encoder_layer, num_encoder_layers, encoder_norm)
decoder_layer = nn.TransformerDecoderLayer(d_model, nhead, dim_feedforward, dropout)
decoder_norm = nn.LayerNorm(d_model)
self.decoder = nn.TransformerDecoder(decoder_layer, num_decoder_layers, decoder_norm)
self.out = nn.Linear(d_model, tgt_vocab_size)
self._reset_parameters()
def _reset_parameters(self):
nn.init.xavier_uniform_(self.out.weight)
nn.init.constant_(self.out.bias, 0.)
def forward(self, src, tgt):
src_mask = self._generate_square_subsequent_mask(src.size(0)).to(src.device)
tgt_mask = self._generate_square_subsequent_mask(tgt.size(0)).to(tgt.device)
src_embeddings = self.embedding_src(src) * math.sqrt(self.d_model)
tgt_embeddings = self.embedding_tgt(tgt) * math.sqrt(self.d_model)
src_embeddings = self.pos_encoder(src_embeddings)
tgt_embeddings = self.pos_encoder(tgt_embeddings)
memory = self.encoder(src_embeddings, src_key_padding_mask=None, mask=src_mask)
output = self.decoder(tgt_embeddings, memory, tgt_mask=tgt_mask, memory_mask=src_mask)
output = self.out(output)
return output
def _generate_square_subsequent_mask(self, sz):
mask = (torch.triu(torch.ones(sz, sz)) == 1).transpose(0, 1)
mask = mask.float().masked_fill(mask == 0, float('-inf')).masked_fill(mask == 1, float(0.))
return mask
```
在使用该模型进行机器翻译时,需要使用交叉熵损失函数和学习率调度器,可以参考以下代码:
```python
model = Transformer(src_vocab_size, tgt_vocab_size, d_model, nhead, num_encoder_layers, num_decoder_layers, dim_feedforward, dropout).to(device)
criterion = nn.CrossEntropyLoss(ignore_index=pad_idx)
optimizer = torch.optim.Adam(model.parameters(), lr=lr)
scheduler = torch.optim.lr_scheduler.StepLR(optimizer, 1.0, gamma=0.95)
for epoch in range(num_epochs):
model.train()
for batch in dataloader:
src = batch[0].to(device)
tgt = batch[1].to(device)
output = model(src, tgt[:-1])
loss = criterion(output.reshape(-1, output.size(-1)), tgt[1:].reshape(-1))
optimizer.zero_grad()
loss.backward()
torch.nn.utils.clip_grad_norm_(model.parameters(), max_norm=1)
optimizer.step()
scheduler.step()
```
其中,`src_vocab_size`和`tgt_vocab_size`分别表示源语言和目标语言的词汇表大小,`d_model`表示模型的维度,`nhead`表示多头注意力的头数,`num_encoder_layers`表示编码器层数,`num_decoder_layers`表示解码器层数,`dim_feedforward`表示前馈层的维度,`dropout`表示Dropout的概率,`pad_idx`表示填充符的索引。在训练过程中,需要将目标序列向右移动一位,并且在计算损失时忽略填充符。
阅读全文