多目标粒子群优化算法的代码
时间: 2023-09-07 12:14:59 浏览: 71
以下是多目标粒子群优化算法的Python代码实现:
```python
import random
class Particle:
def __init__(self, dim, bounds):
self.position = [random.uniform(bounds[i][0], bounds[i][1]) for i in range(dim)]
self.velocity = [0.0 for i in range(dim)]
self.best_position = self.position[:]
self.best_fitness = float('inf')
self.fitness = [0.0 for i in range(2)]
def evaluate(self, evaluate_func):
self.fitness = evaluate_func(self.position)
if self.fitness[0] < self.best_fitness:
self.best_fitness = self.fitness[0]
self.best_position = self.position[:]
def update_velocity(self, gbest, w, c1, c2):
for i in range(len(self.velocity)):
r1, r2 = random.random(), random.random()
cognitive = c1 * r1 * (self.best_position[i] - self.position[i])
social = c2 * r2 * (gbest[i] - self.position[i])
self.velocity[i] = w * self.velocity[i] + cognitive + social
def update_position(self, bounds):
for i in range(len(self.position)):
self.position[i] += self.velocity[i]
if self.position[i] < bounds[i][0]:
self.position[i] = bounds[i][0]
self.velocity[i] = 0.0
elif self.position[i] > bounds[i][1]:
self.position[i] = bounds[i][1]
self.velocity[i] = 0.0
class MultiObjectivePSO:
def __init__(self, n_particles, dim, bounds, evaluate_func, w=0.7, c1=1.4, c2=1.4):
self.n_particles = n_particles
self.dim = dim
self.bounds = bounds
self.evaluate_func = evaluate_func
self.w = w
self.c1 = c1
self.c2 = c2
self.particles = [Particle(dim, bounds) for i in range(n_particles)]
self.gbest = self.particles[0].position[:]
self.gbest_fitness = [float('inf') for i in range(2)]
def optimize(self, n_iter):
for i in range(n_iter):
for particle in self.particles:
particle.evaluate(self.evaluate_func)
if particle.fitness[1] < self.gbest_fitness[1]:
self.gbest = particle.position[:]
self.gbest_fitness = particle.fitness[:]
for particle in self.particles:
particle.update_velocity(self.gbest, self.w, self.c1, self.c2)
particle.update_position(self.bounds)
def get_particles(self):
return [particle.position for particle in self.particles]
def get_gbest(self):
return self.gbest
def get_gbest_fitness(self):
return self.gbest_fitness
```
使用方法:
1. 定义目标函数,例如:
```python
def evaluate_func(position):
x = position[0]
y = position[1]
f1 = x**2 + y**2
f2 = (x-1)**2 + y**2
return [f1, f2]
```
2. 创建MultiObjectivePSO对象,并调用optimize方法进行优化,例如:
```python
n_particles = 50
dim = 2
bounds = [(-5, 5), (-5, 5)]
pso = MultiObjectivePSO(n_particles, dim, bounds, evaluate_func)
pso.optimize(100)
```
3. 获取优化结果,例如:
```python
particles = pso.get_particles()
gbest = pso.get_gbest()
gbest_fitness = pso.get_gbest_fitness()
```
阅读全文