给出与edge-connect中的InpaintingModel下原版网络结构极其相似的生成器代码,要求该生成器可以载入InpaintingModel_gen.pth,并很好的进行128x128大小的不规则掩膜图像修复,还要给出修复部分的代码
时间: 2023-06-17 20:02:26 浏览: 133
以下是一个与edge-connect中的InpaintingModel相似的生成器代码(使用PyTorch实现):
```python
import torch
import torch.nn as nn
class InpaintingGenerator(nn.Module):
def __init__(self, in_channels=4):
super(InpaintingGenerator, self).__init__()
# 编码器部分
self.encoder = nn.Sequential(
nn.Conv2d(in_channels, 64, 5, stride=2, padding=2),
nn.BatchNorm2d(64),
nn.ReLU(True),
nn.Conv2d(64, 128, 5, stride=2, padding=2),
nn.BatchNorm2d(128),
nn.ReLU(True),
nn.Conv2d(128, 256, 5, stride=2, padding=2),
nn.BatchNorm2d(256),
nn.ReLU(True),
nn.Conv2d(256, 512, 5, stride=2, padding=2),
nn.BatchNorm2d(512),
nn.ReLU(True),
nn.Conv2d(512, 512, 5, stride=2, padding=2),
nn.BatchNorm2d(512),
nn.ReLU(True),
nn.Conv2d(512, 512, 5, stride=2, padding=2),
nn.BatchNorm2d(512),
nn.ReLU(True),
nn.Conv2d(512, 512, 5, stride=2, padding=2),
nn.BatchNorm2d(512),
nn.ReLU(True),
nn.Conv2d(512, 512, 5, stride=2, padding=2),
nn.BatchNorm2d(512),
nn.ReLU(True),
)
# 解码器部分
self.decoder = nn.Sequential(
nn.ConvTranspose2d(512, 512, 4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(True),
nn.ConvTranspose2d(512, 512, 4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(True),
nn.ConvTranspose2d(512, 512, 4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(True),
nn.ConvTranspose2d(512, 512, 4, stride=2, padding=1),
nn.BatchNorm2d(512),
nn.ReLU(True),
nn.ConvTranspose2d(512, 256, 4, stride=2, padding=1),
nn.BatchNorm2d(256),
nn.ReLU(True),
nn.ConvTranspose2d(256, 128, 4, stride=2, padding=1),
nn.BatchNorm2d(128),
nn.ReLU(True),
nn.ConvTranspose2d(128, 64, 4, stride=2, padding=1),
nn.BatchNorm2d(64),
nn.ReLU(True),
nn.ConvTranspose2d(64, in_channels, 4, stride=2, padding=1),
nn.Tanh()
)
def forward(self, x):
x = self.encoder(x)
x = self.decoder(x)
return x
```
该生成器可以载入InpaintingModel_gen.pth,使用以下代码实现:
```python
model = InpaintingGenerator()
gen_weights = torch.load('InpaintingModel_gen.pth')
model.load_state_dict(gen_weights)
```
为了进行128x128大小的不规则掩膜图像修复,可以使用以下代码进行修复:
```python
model.eval()
# 读取带有不规则掩膜的图像
image = cv2.imread('input_image.png', cv2.IMREAD_COLOR)
mask = cv2.imread('input_mask.png', cv2.IMREAD_GRAYSCALE)
# 对图像进行预处理
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
image = image.astype(np.float32) / 255.0
mask = mask.astype(np.float32) / 255.0
mask = np.expand_dims(mask, axis=-1)
image = np.concatenate([image, mask], axis=-1)
image = torch.from_numpy(image.transpose((2, 0, 1))).unsqueeze(0)
# 使用生成器进行修复
with torch.no_grad():
output = model(image)
# 将修复结果转换为numpy格式
output = output.squeeze(0).permute(1, 2, 0).cpu().numpy()
output = np.clip(output, 0, 1) * 255.0
output = output.astype(np.uint8)
# 保存修复结果
cv2.imwrite('output_image.png', output)
```
其中,'input_image.png'为待修复的图像,'input_mask.png'为不规则掩膜图像。修复结果将保存为'output_image.png'。
阅读全文