显示detectORBFeatures未定义函数或变量

时间: 2023-09-24 17:10:59 浏览: 42
如果你的MATLAB版本比较新,可能会出现 `detectORBFeatures` 函数未定义的情况。这是因为 `detectORBFeatures` 函数是在较新的版本中才被引入的。在这种情况下,你可以使用 `detectSURFFeatures` 函数代替 `detectORBFeatures` 函数,因为 SURF 特征和 ORB 特征具有类似的性质。以下是使用 `detectSURFFeatures` 函数实现特征提取和匹配的示例代码: ```matlab % 读取图像 img1 = imread('image1.jpg'); img2 = imread('image2.jpg'); % 提取SURF特征 points1 = detectSURFFeatures(rgb2gray(img1)); points2 = detectSURFFeatures(rgb2gray(img2)); [features1, validPoints1] = extractFeatures(rgb2gray(img1), points1); [features2, validPoints2] = extractFeatures(rgb2gray(img2), points2); % 进行SURF特征匹配 indexPairs = matchFeatures(features1, features2); matchedPoints1 = validPoints1(indexPairs(:, 1), :); matchedPoints2 = validPoints2(indexPairs(:, 2), :); % 显示匹配结果 figure; showMatchedFeatures(img1, img2, matchedPoints1, matchedPoints2); ``` 与前面的代码示例相比,此示例中仅将 `detectORBFeatures` 函数替换为 `detectSURFFeatures` 函数。

相关推荐

最新推荐

torchvision-0.5.0-cp35-cp35m-linux_x86_64.whl.zip

torchvision-0.5.0-cp35-cp35m-linux_x86_64.whl.zip

python基于大数据反电信诈骗管理系统

电信诈骗案在生活场景当中可谓是数不胜数,令人们非常麻烦,而且还很不好防。而且一旦发生了以后人们的财产再追回非常困难。如能采用我们日常所用的信息技术来解决这些问题来说非常好了。 基于大数据反电信诈骗管理系统的目的就是在于建立属于自己的一套反电信诈骗系统,在日常的工作中,反电信诈骗是一件非常重要的事情,主要还是用python的手段来进行的开发。

基于java+控制台实现学生宿舍管理系统

Java实现控制台学生宿舍管理系统摘要:Java实现控制台学生宿舍管理系统,实现登录、增删改查,系统经多次测试,运行无误,请大家放心下载。 学员可以学到:Enum的使用,List的使用等。

基于HTML5的移动互联网应用发展趋势.pptx

基于HTML5的移动互联网应用发展趋势.pptx

混合神经编码调制的设计和训练方法

可在www.sciencedirect.com在线获取ScienceDirectICTExpress 8(2022)25www.elsevier.com/locate/icte混合神经编码调制:设计和训练方法Sung Hoon Lima,Jiyong Hana,Wonjong Noha,Yujae Songb,Sang-WoonJeonc,a大韩民国春川,翰林大学软件学院b韩国龟尾国立技术学院计算机软件工程系,邮编39177c大韩民国安山汉阳大学电子电气工程系接收日期:2021年9月30日;接收日期:2021年12月31日;接受日期:2022年1月30日2022年2月9日在线发布摘要提出了一种由内码和外码组成的混合编码调制方案。外码可以是任何标准的二进制具有有效软解码能力的线性码(例如,低密度奇偶校验(LDPC)码)。内部代码使用深度神经网络(DNN)设计,该深度神经网络获取信道编码比特并输出调制符号。为了训练DNN,我们建议使用损失函数,它是受广义互信息的启发。所得到的星座图被示出优于具有5G标准LDPC码的调制�

利用Pandas库进行数据分析与操作

# 1. 引言 ## 1.1 数据分析的重要性 数据分析在当今信息时代扮演着至关重要的角色。随着信息技术的快速发展和互联网的普及,数据量呈爆炸性增长,如何从海量的数据中提取有价值的信息并进行合理的分析,已成为企业和研究机构的一项重要任务。数据分析不仅可以帮助我们理解数据背后的趋势和规律,还可以为决策提供支持,推动业务发展。 ## 1.2 Pandas库简介 Pandas是Python编程语言中一个强大的数据分析工具库。它提供了高效的数据结构和数据分析功能,为数据处理和数据操作提供强大的支持。Pandas库是基于NumPy库开发的,可以与NumPy、Matplotlib等库结合使用,为数

appium自动化测试脚本

Appium是一个跨平台的自动化测试工具,它允许测试人员使用同一套API来编写iOS和Android平台的自动化测试脚本。以下是一个简单的Appium自动化测试脚本的示例: ```python from appium import webdriver desired_caps = {} desired_caps['platformName'] = 'Android' desired_caps['platformVersion'] = '9' desired_caps['deviceName'] = 'Android Emulator' desired_caps['appPackage']

智能时代人机交互的一些思考.pptx

智能时代人机交互的一些思考.pptx

"基于自定义RC-NN的优化云计算网络入侵检测"

⃝可在www.sciencedirect.com在线获取ScienceDirectICTExpress 7(2021)512www.elsevier.com/locate/icte基于自定义RC-NN和优化的云计算网络入侵检测T.蒂拉加姆河ArunaVelTech Rangarajan博士Sagunthala研发科学技术研究所,印度泰米尔纳德邦钦奈接收日期:2020年8月20日;接收日期:2020年10月12日;接受日期:2021年4月20日2021年5月5日网上发售摘要入侵检测是保证信息安全的重要手段,其关键技术是对各种攻击进行准确分类。入侵检测系统(IDS)被认为是云网络环境中的一个重要安全问题。在本文中,IDS给出了一个创新的优化定制的RC-NN(递归卷积神经网络),提出了入侵检测与蚁狮优化算法的基础上。通过这种方法,CNN(卷积神经网络)与LSTM(长短期记忆)混合。因此,利用云的网络层识别的所有攻击被有效地分类。下面所示的实验结果描述了具有高精度的IDS分类模型的呈现,从而�

Shell脚本中的并发编程和多线程操作

# 一、引言 ## 1.1 介绍Shell脚本中并发编程和多线程操作的概念与意义 在Shell编程中,并发编程和多线程操作是指同时执行多个任务或操作,这在处理大规模数据和提高程序执行效率方面非常重要。通过并发编程和多线程操作,可以实现任务的同时执行,充分利用计算资源,加快程序运行速度。在Shell脚本中,也可以利用并发编程和多线程操作来实现类似的效果,提高脚本的执行效率。 ## 1.2 探讨并发编程和多线程在IT领域的应用场景 在IT领域,并发编程和多线程操作被广泛应用于各种场景,包括但不限于: - Web服务器中处理并发请求 - 数据库操作中的并发访问和事务处理 - 大数据处理和分析