C语言文本分类算法的代码实现
时间: 2023-07-05 09:08:42 浏览: 193
C语言文本分类算法的实现主要分为以下几个步骤:
1. 数据预处理:将文本数据转换成数字,也就是将每个单词转换成一个数字。这可以通过词袋模型和TF-IDF算法来实现。
2. 特征提取:对文本数据进行特征提取,常用的特征包括词频、TF-IDF值、主题模型等。
3. 分类器训练:选择合适的分类器进行训练,常用的分类器包括朴素贝叶斯、支持向量机、决策树等。
4. 测试模型:使用测试集对训练好的模型进行测试,评估模型的性能。
下面是一个简单的C语言文本分类算法实现代码:
```c
#include<stdio.h>
#include<stdlib.h>
#include<string.h>
#include<math.h>
#define MAX_WORDS 10000 // 最大单词数
#define MAX_DOCS 1000 // 最大文档数
// 单词结构体
typedef struct _word{
char *text; // 单词内容
int count; // 单词出现次数
double idf; // 单词IDF值
}Word;
// 文档结构体
typedef struct _doc{
char *text; // 文档内容
Word **words; // 文档包含的单词数组
int *counts; // 文档包含的单词出现次数数组
int num_words; // 文档包含的单词数
int label; // 文档类别
}Doc;
// 数据集结构体
typedef struct _dataset{
Doc **docs; // 文档数组
int num_docs; // 文档数
Word **words; // 单词数组
int num_words; // 单词数
}Dataset;
// 读取文本文件
char *read_file(char *filename){
FILE *fp = fopen(filename, "r");
if(fp == NULL){
printf("File not found!\n");
return NULL;
}
fseek(fp, 0, SEEK_END);
long size = ftell(fp);
char *text = (char *)malloc(size + 1);
fseek(fp, 0, SEEK_SET);
fread(text, size, 1, fp);
fclose(fp);
text[size] = '\0';
return text;
}
// 分割文本为单词数组
Word **split_text(char *text, int *num_words){
Word **words = (Word **)malloc(sizeof(Word *) * MAX_WORDS);
char *token = strtok(text, " \n\t\r");
int count = 0;
while(token != NULL){
int found = 0;
for(int i = 0; i < count; i++){
if(strcmp(words[i]->text, token) == 0){
words[i]->count++;
found = 1;
break;
}
}
if(!found){
Word *w = (Word *)malloc(sizeof(Word));
w->text = token;
w->count = 1;
words[count++] = w;
}
token = strtok(NULL, " \n\t\r");
}
*num_words = count;
return words;
}
// 计算单词IDF值
void calc_idf(Dataset *data){
for(int i = 0; i < data->num_words; i++){
int num_docs = 0;
for(int j = 0; j < data->num_docs; j++){
for(int k = 0; k < data->docs[j]->num_words; k++){
if(strcmp(data->docs[j]->words[k]->text, data->words[i]->text) == 0){
num_docs++;
break;
}
}
}
data->words[i]->idf = log((double)data->num_docs / (double)num_docs);
}
}
// 数据集预处理
void preprocess(Dataset *data, char **filenames, int num_files){
for(int i = 0; i < num_files; i++){
char *text = read_file(filenames[i]);
Word **words = split_text(text, &(data->docs[i]->num_words));
data->docs[i]->text = text;
data->docs[i]->words = words;
}
for(int i = 0; i < data->num_docs; i++){
int *counts = (int *)calloc(data->num_words, sizeof(int));
for(int j = 0; j < data->docs[i]->num_words; j++){
for(int k = 0; k < data->num_words; k++){
if(strcmp(data->docs[i]->words[j]->text, data->words[k]->text) == 0){
counts[k] = data->docs[i]->words[j]->count;
break;
}
}
}
data->docs[i]->counts = counts;
}
calc_idf(data);
}
// 训练朴素贝叶斯分类器
void train_naive_bayes(Dataset *data, double *priors, double **likelihoods){
for(int i = 0; i < data->num_docs; i++){
priors[data->docs[i]->label]++;
for(int j = 0; j < data->num_words; j++){
likelihoods[data->docs[i]->label][j] += data->docs[i]->counts[j] * data->words[j]->idf;
}
}
for(int i = 0; i < 2; i++){
double total = 0.0;
for(int j = 0; j < data->num_words; j++){
total += likelihoods[i][j];
}
for(int j = 0; j < data->num_words; j++){
likelihoods[i][j] /= total;
}
priors[i] /= (double)data->num_docs;
}
}
// 预测文档类别
int predict(Dataset *data, double *priors, double **likelihoods, char *filename){
char *text = read_file(filename);
Word **words = split_text(text, &(data->docs[data->num_docs]->num_words));
Doc *doc = (Doc *)malloc(sizeof(Doc));
doc->text = text;
doc->words = words;
int *counts = (int *)calloc(data->num_words, sizeof(int));
for(int i = 0; i < doc->num_words; i++){
for(int j = 0; j < data->num_words; j++){
if(strcmp(doc->words[i]->text, data->words[j]->text) == 0){
counts[j] = doc->words[i]->count;
break;
}
}
}
doc->counts = counts;
double scores[2] = {0.0};
for(int i = 0; i < 2; i++){
for(int j = 0; j < data->num_words; j++){
scores[i] += likelihoods[i][j] * doc->counts[j] * data->words[j]->idf;
}
scores[i] += log(priors[i]);
}
int label = (scores[0] > scores[1]) ? 0 : 1;
return label;
}
// 主函数
int main(){
char *filenames[MAX_DOCS] = {"doc1.txt", "doc2.txt", "doc3.txt", "doc4.txt"};
Dataset *data = (Dataset *)malloc(sizeof(Dataset));
data->num_docs = 4;
data->num_words = 0;
data->docs = (Doc **)malloc(sizeof(Doc *) * data->num_docs);
for(int i = 0; i < data->num_docs; i++){
data->docs[i] = (Doc *)malloc(sizeof(Doc));
data->docs[i]->label = i % 2;
}
char *text = read_file(filenames[0]);
Word **words = split_text(text, &(data->num_words));
data->words = words;
preprocess(data, filenames, data->num_docs);
double priors[2] = {0.0};
double **likelihoods = (double **)malloc(sizeof(double *) * 2);
for(int i = 0; i < 2; i++){
likelihoods[i] = (double *)calloc(data->num_words, sizeof(double));
}
train_naive_bayes(data, priors, likelihoods);
for(int i = 0; i < data->num_docs; i++){
int label = predict(data, priors, likelihoods, filenames[i]);
printf("Document %d is classified as %d\n", i+1, label);
}
return 0;
}
```
上述代码实现了一个简单的朴素贝叶斯分类器,使用TF-IDF作为特征,并且只能分类两个类别。完整的文本分类算法还需要考虑更多的特征和更复杂的分类器。
阅读全文