torch.manual_seed(config["seed"])
时间: 2024-05-25 20:17:34 浏览: 113
This line of code sets the random seed for PyTorch to a value specified in the "seed" field of the configuration dictionary, ensuring that the results of any random operations (such as initialization of weights or shuffling of data) are reproducible across runs. This is important for debugging and evaluating models, as it allows for consistent comparisons between different experiments or algorithms.
相关问题
torch.backends.cudnn报错
回答: 当使用torch.backends.cudnn时,有时会出现报错的情况。为了解决这个问题,你可以尝试以下几个解决方案。首先,你可以在你的train.py或者main.py开头加上一段代码来固定所有的随机种子,包括numpy、python和pytorch(cpu、gpu)。这样可以使用deterministic=True的代码来确保你得到相同的测试精度或误差,但会导致训练速度变慢。具体的代码如下所示:\[2\]
```python
def seed_torch(seed: int = 42) -> None:
random.seed(seed)
os.environ\['PYTHONHASHSEED'\] = str(seed) # 为了禁止hash随机化,使得实验可复现
os.environ\["CUDA_LAUNCH_BLOCKING"\] = "1"
os.environ\["CUBLAS_WORKSPACE_CONFIG"\] = ":16:8"
np.random.seed(seed)
torch.manual_seed(seed)
torch.cuda.manual_seed(seed)
torch.cuda.manual_seed_all(seed)
torch.backends.cudnn.benchmark = False
torch.backends.cudnn.deterministic = True
print(f"Random seed set as {seed}")
seed_torch()
```
另外,你也可以使用torch.use_deterministic_algorithms函数来检测是否使用了随机算法,并解决报错问题。具体的操作可以参考pytorch官方文档中关于pytorch non-deterministic操作的说明。\[3\]
希望以上解决方案能够帮助你解决torch.backends.cudnn报错的问题。如果问题仍然存在,请尝试其他方法或查阅更多相关资料。
#### 引用[.reference_title]
- *1* *2* *3* [Pytorch 深度学习结果无法复现的解决办法](https://blog.csdn.net/weixin_45203752/article/details/126596853)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^insert_down1,239^v3^insert_chatgpt"}} ] [.reference_item]
[ .reference_list ]
阅读全文
相关推荐















