使用Verilog写一段代码,能完成32bit位宽的AXI-Stream总线的数据输入,将数据全部加一之后输出。
时间: 2023-03-14 14:16:08 浏览: 399
module AXI_Stream_Add_One #(parameter DATA_WIDTH = 32) (input wire [DATA_WIDTH-1:0] data_in, output wire [DATA_WIDTH-1:0] data_out, input wire valid_in, output wire valid_out ); reg [DATA_WIDTH-1:0] data_reg; assign data_out = data_reg + 1'b1; always @ (posedge valid_in) data_reg <= data_in; assign valid_out = valid_in; endmodule
相关问题
用verilog写一个FIFO转AXI-Stream的代码
以下是一个简单的FIFO转AXI-Stream的Verilog代码:
```
module fifo_to_axi_stream (
input clk,
input rst,
input [31:0] data_in,
input wr_en,
output [31:0] data_out,
output axi_tvalid,
output axi_tlast,
output axi_tready
);
// AXI-Stream interface signals
reg [31:0] axi_data;
reg axi_tvalid;
reg axi_tlast;
wire axi_tready;
// FIFO signals
reg [31:0] fifo [0:7];
reg [2:0] rd_ptr = 0;
reg [2:0] wr_ptr = 0;
reg [2:0] count = 0;
reg full = 0;
reg empty = 1;
// Write data to FIFO
always @(posedge clk) begin
if (rst) begin
wr_ptr <= 0;
count <= 0;
full <= 0;
empty <= 1;
end else if (wr_en && !full) begin
fifo[wr_ptr] <= data_in;
wr_ptr <= wr_ptr + 1;
count <= count + 1;
full <= (count == 8);
empty <= 0;
end
end
// Read data from FIFO and send to AXI-Stream
always @(posedge clk) begin
if (rst) begin
rd_ptr <= 0;
axi_data <= 0;
axi_tvalid <= 0;
axi_tlast <= 0;
end else if (!empty && axi_tready) begin
axi_data <= fifo[rd_ptr];
rd_ptr <= rd_ptr + 1;
count <= count - 1;
full <= 0;
empty <= (count == 0);
axi_tvalid <= 1;
axi_tlast <= (count == 1);
end else begin
axi_tvalid <= 0;
axi_tlast <= 0;
end
end
// Assign output signals
assign data_out = axi_data;
assign axi_tready = 1;
endmodule
```
在这个模块中,我们使用了一个8个元素的FIFO,以将输入数据从一个时钟域传递到另一个时钟域。输入数据通过`data_in`信号传递,并且在`wr_en`信号为高电平时写入FIFO。输出数据通过`data_out`信号传递,以便在AXI-Stream时钟域中使用。
AXI-Stream接口由三个信号组成:数据信号(axi_data),有效标志(axi_tvalid)和末尾标志(axi_tlast)。在本例中,我们使用一个简单的流水线协议,其中我们在每个时钟周期中传输一个32位数据。有效标志表示当前传输的数据是否有效,末尾标志表示当前传输的数据是否为流的最后一个数据。在本例中,我们使用FIFO中的数据计数来确定何时传输最后一个数据。
请注意,我们使用了同步复位信号(rst)来确保在系统启动时所有信号都处于已知状态。
如何用Verilog写AXI4-Stream接口支持多种位宽
AXI4-Stream是一种用于高速数据传输的接口协议,它可以支持不同的位宽。如果你想在Verilog中实现AXI4-Stream接口,可以按照以下步骤进行:
1. 确定数据位宽和字节使能信号的位宽,这些信号将用于AXI4-Stream接口的数据和控制信号。
2. 定义一个AXI4-Stream接口模块,该模块应该包含输入和输出端口,以及其他必要的内部信号。
3. 在模块中定义一个FIFO缓冲区,用于存储输入数据。
4. 在模块中实现AXI4-Stream接口的读取和写入逻辑,具体实现方式可以参考AXI4-Stream协议规范。
5. 在模块中实现数据位宽转换逻辑,将输入数据从其原始位宽转换为接口所需的位宽,或者将输出数据从接口所需的位宽转换为其原始位宽。
6. 可以使用参数化方式实现支持多种位宽的AXI4-Stream接口,这样可以节省代码量并提高可重用性。
下面给出一个简单的代码示例,该示例实现了支持32位和64位数据位宽的AXI4-Stream接口:
```
module axi_stream #(parameter DATA_WIDTH = 32) (
input wire clk,
input wire reset,
input wire s_axis_tvalid,
input wire [DATA_WIDTH-1:0] s_axis_tdata,
input wire s_axis_tlast,
input wire [DATA_WIDTH/8-1:0] s_axis_tkeep,
output wire s_axis_tready,
output reg m_axis_tvalid,
output reg [DATA_WIDTH-1:0] m_axis_tdata,
output reg m_axis_tlast,
output reg [DATA_WIDTH/8-1:0] m_axis_tkeep,
input wire m_axis_tready
);
// FIFO buffer
reg [DATA_WIDTH-1:0] buffer;
reg buffer_valid;
// AXI4-Stream read logic
always @(posedge clk) begin
if (reset) begin
m_axis_tvalid <= 0;
m_axis_tdata <= 0;
m_axis_tlast <= 0;
m_axis_tkeep <= 0;
buffer_valid <= 0;
end else begin
if (m_axis_tready && buffer_valid) begin
m_axis_tvalid <= 1;
m_axis_tdata <= buffer;
m_axis_tlast <= s_axis_tlast;
m_axis_tkeep <= s_axis_tkeep;
buffer_valid <= 0;
end else if (m_axis_tvalid && m_axis_tready) begin
m_axis_tvalid <= 0;
m_axis_tdata <= 0;
m_axis_tlast <= 0;
m_axis_tkeep <= 0;
end
end
end
// AXI4-Stream write logic
always @(posedge clk) begin
if (reset) begin
s_axis_tready <= 0;
buffer_valid <= 0;
end else begin
if (s_axis_tvalid && s_axis_tready) begin
s_axis_tready <= 1;
buffer <= s_axis_tdata;
buffer_valid <= 1;
end else if (buffer_valid && !s_axis_tvalid) begin
s_axis_tready <= 0;
end else begin
s_axis_tready <= s_axis_tvalid;
end
end
end
// Data width conversion logic
always @(posedge clk) begin
if (reset) begin
m_axis_tdata <= 0;
m_axis_tkeep <= 0;
end else begin
if (m_axis_tvalid && m_axis_tready) begin
if (DATA_WIDTH == 32) begin
m_axis_tdata <= {32{m_axis_tdata[31:0]}};
m_axis_tkeep <= {4{m_axis_tkeep[3:0]}};
end else if (DATA_WIDTH == 64) begin
m_axis_tdata <= {m_axis_tdata[31:0], m_axis_tdata[31:0]};
m_axis_tkeep <= {8{m_axis_tkeep[3:0]}};
end
end
end
end
endmodule
```
在上面的代码中,我们定义了一个参数化的axi_stream模块,该模块支持32位和64位数据位宽。具体实现方式包括FIFO缓冲区、AXI4-Stream读取和写入逻辑,以及数据位宽转换逻辑。该模块可以通过如下方式实例化:
```
axi_stream #(DATA_WIDTH) my_axi_stream(
.clk(clk),
.reset(reset),
.s_axis_tvalid(s_axis_tvalid),
.s_axis_tdata(s_axis_tdata),
.s_axis_tlast(s_axis_tlast),
.s_axis_tkeep(s_axis_tkeep),
.s_axis_tready(s_axis_tready),
.m_axis_tvalid(m_axis_tvalid),
.m_axis_tdata(m_axis_tdata),
.m_axis_tlast(m_axis_tlast),
.m_axis_tkeep(m_axis_tkeep),
.m_axis_tready(m_axis_tready)
);
```
其中,DATA_WIDTH为32或64,具体取决于实例化时的需要。
阅读全文