STC12c5a60s2的P1.6引脚与SDA引脚相连,P1.5引脚与SCL引脚相连,反馈电阻为10k欧,用keil编写程序使AD5933不断测量不同阻抗的值

时间: 2023-09-10 08:04:53 浏览: 28
### 回答1: AD5933是一款高精度阻抗测量芯片,可以测量复阻抗值的实部和虚部。下面是一个基于STC12C5A60S2的AD5933测量程序的框架,你可以根据自己的需求进行修改: ```c #include <reg52.h> #include <intrins.h> #define AD5933_ADDRESS 0x0D // AD5933地址 #define CONTROL_REG_ADDRESS 0x80 // 控制寄存器地址 #define START_FREQ_ADDRESS 0x82 // 起始频率地址 #define FREQ_INCR_ADDRESS 0x85 // 频率步进地址 #define NUM_INCR_ADDRESS 0x88 // 步进数目地址 #define SETTLING_CYCLES_ADDRESS 0x8B // 稳定周期地址 #define TEMP_ADDRESS 0x92 // 温度地址 #define REAL_DATA_ADDRESS 0x94 // 实部数据地址 #define IMAG_DATA_ADDRESS 0x96 // 虚部数据地址 #define SCL P1_5 #define SDA P1_6 unsigned char i; // 循环计数器 // 向I2C总线发送一个字节 void i2c_send_byte(unsigned char dat) { unsigned char i; for(i = 0; i < 8; i++) { SDA = (dat & 0x80) >> 7; dat <<= 1; _nop_(); SCL = 1; _nop_(); SCL = 0; } _nop_(); SDA = 1; _nop_(); SCL = 1; _nop_(); while(SCL == 0); } // 从I2C总线读取一个字节 unsigned char i2c_read_byte() { unsigned char i, dat = 0; for(i = 0; i < 8; i++) { dat <<= 1; _nop_(); SCL = 1; _nop_(); dat |= SDA; SCL = 0; } return dat; } // 向AD5933写入一个字节的数据 void write_ad5933(unsigned char reg_address, unsigned char dat) { i2c_start(); i2c_send_byte(AD5933_ADDRESS << 1); i2c_send_byte(reg_address); i2c_send_byte(dat); i2c_stop(); } // 从AD5933读取一个字节的数据 unsigned char read_ad5933(unsigned char reg_address) { unsigned char dat; i2c_start(); i2c_send_byte(AD5933_ADDRESS << 1); i2c_send_byte(reg_address); i2c_start(); i2c_send_byte((AD5933_ADDRESS << 1) | 0x01); dat = i2c_read_byte(); i2c_stop(); return dat; } // 初始化AD5933 void init_ad5933() { unsigned char i; // 设置控制寄存器 write_ad5933(CONTROL_REG_ADDRESS, 0x00); // 设置起始频率 write_ad5933(START_FREQ_ADDRESS, 0x00); write_ad5933(START_FREQ_ADDRESS + 1, 0x80); write_ad5933(START_FREQ_ADDRESS + 2, 0x00); // 设置频率步进 write_ad5933(FREQ_INCR_ADDRESS, 0x00); write_ad5933(FREQ_INCR_ADDRESS + 1, 0x00); write_ad5933(FREQ_INCR_ADDRESS + 2, 0x00); // 设置步进数目 write_ad5933(NUM_INCR_ADDRESS, 0x00); write_ad5933(NUM_INCR_ADDRESS + 1, 0x01); // 设置稳定周期 write_ad5933(SETTLING_CYCLES_ADDRESS, 0x00); write_ad5933(SETTLING_CYCLES_ADDRESS + 1, 0x01); // 开启外部系统时钟 write_ad5933(CONTROL_REG_ADDRESS, 0x10); } // 读取AD5933的实部和虚部数据 void read_ad5933_data(unsigned char *real_data, unsigned char *imag_data) { unsigned char temp; // 等待数据就绪 while((read_ad5933(CONTROL_REG_ADDRESS) & 0x04) == 0); // 读取实部数据 write_ad5933(REAL_DATA_ADDRESS, 0x00); *real_data = read_ad5933(REAL_DATA_ADDRESS + 1); // 读取虚部数据 write_ad5933(IMAG_DATA_ADDRESS, 0x00); *imag_data = read_ad5933(IMAG_DATA_ADDRESS + 1); } // 主程序 void main() { unsigned char real_data, imag_data; // 初始化AD5933 init_ad5933(); while(1) { // 读取阻抗测量数据 read_ad5933_data(&real_data, &imag_data); // 在这里处理数据 // ... } } ``` 在程序中,我们首先定义了AD5933的I2C地址以及各个寄存器的地址。然后我们通过定义SCL和SDA引脚的宏来操作I2C总线。在i2c_send_byte函数和i2c_read_byte函数中,我们实现了I2C总线的发送和接收操作。通过write_ad5933和read_ad5933函数,我们可以向AD5933芯片写入数据或者从AD5933芯片读取数据。在init_ad5933函数中,我们设置了AD5933的各项参数,包括起始频率、频率步进、步进数目等。在read_ad5933_data函数中,我们读取了AD5933的实部和虚部数据,并返回给主程序进行处理。 在主程序中,我们首先初始化AD5933,然后进入一个无限循环,在循环中不断读取阻抗测量数据,并进行相应的处理。你只需要在程序中加入你自己的处理代码,就可以实现测量不同阻抗值的功能了。 ### 回答2: STC12c5a60s2是一款单片机,P1.6引脚与SDA引脚相连,P1.5引脚与SCL引脚相连。AD5933是一款测量电阻的芯片,我们需要使用STC12c5a60s2与AD5933进行通信,并编写程序以不断测量不同阻抗的值。 首先,我们需要在Keil中创建一个新的工程。然后,我们需要配置STC12c5a60s2的GPIO引脚,将P1.6设置为SDA引脚,将P1.5设置为SCL引脚。 接下来,我们需要加载AD5933的驱动程序,并初始化AD5933芯片。在初始化期间,我们需要设置AD5933的工作模式和其他参数,例如反馈电阻为10k欧姆。 然后,我们需要编写一个循环,以便不断测量不同阻抗的值。在每次循环中,我们需要发送一个开始命令给AD5933,然后等待AD5933完成测量。之后,我们需要读取AD5933的测量结果,并处理该结果。 在处理AD5933的测量结果时,我们可以将其显示在屏幕上或存储在一个数组中。我们还可以与其他设备进行通信,将结果发送给其他设备进行进一步处理或显示。 需要注意的是,AD5933的具体使用方法和命令可以在其数据手册中找到。我们需要根据实际需求和硬件连接来编写程序,并进行适当的调试和测试,以确保测量结果的准确性和可靠性。 总之,通过使用Keil编写程序,我们可以控制STC12c5a60s2与AD5933进行通信,并不断测量不同阻抗的值。这将使我们能够进行电阻的测量和分析,从而满足各种应用需求。 ### 回答3: STC12c5a60s2是一款单片机,其中的P1.6引脚与SDA引脚相连,P1.5引脚与SCL引脚相连。反馈电阻选择10k欧姆,用keil编写程序来实现AD5933的不断测量不同阻抗值的功能。 首先,在keil中创建一个新的工程,并选择STC12C5A60S2作为目标芯片。然后,引入AD5933的库文件,该库文件包含了AD5933的相关函数和定义。 接下来,需要初始化AD5933芯片。首先,通过I2C总线与AD5933进行通信,将P1.5引脚配置为SCL引脚,P1.6引脚配置为SDA引脚。之后,使用AD5933库函数进行初始化设置,包括设置参考电压、增益和输出频率等。 在测量过程中,可以根据需求来设置不同的阻抗值。通过AD5933库函数设置起始频率、终止频率和步长等参数,然后使用AD5933的频率扫描功能,按照步长逐渐改变频率值,并将测量结果存储在指定的变量中。可以通过AD5933的库函数将测量结果输出到串口或者显示设备上。 为了实现连续测量不同阻抗值的功能,可以使用循环结构进行控制。在循环中不断改变AD5933的频率参数,然后进行测量,最后延时一段时间后继续下一次的测量。可以根据需要设置延时的时间间隔,以控制测量的频率。 最后,可以根据实际的需求来处理测量结果。例如,可以通过串口将结果输出到上位机进行进一步分析和处理,或者将结果保存至存储设备中进行备份和记录。 总之,通过使用keil编写程序,结合STC12c5a60s2单片机和AD5933芯片的功能,可以实现不断测量不同阻抗值的功能。

相关推荐

最新推荐

用STC12C5A60S2的智能循迹小车

本设计中的智能循迹小车,采用 TRCT5000 红外传感器为循迹模块,单片机 STC12C5A60S2 为控制模块,L298N 为电机驱动模块,LM2940 为电源模块。

STC12C5A60S2中的AD转换

STC12C5A60S2中的AD转换。AD里面包含da,当输入电压Vin时,da的最高位是1,即为0.5Vref与输入信号比较,如果输入大于0.5Vref则比较器输出为1,同时da的最高位为1,反之DA最高位则为0,通过8次比较后得到8个01数据即...

基于STC12C5A60S2单片机的电子密码锁设计.pdf

基于STC12C5A60S2单片机的电子密码锁设计是以STC12C5A60S2单片机为控制核心的密码锁方案,配合相应的基于STC12C5A60S2单片机的电子密码锁电路和基于STC12C5A60S2单片机的电子密码锁软件程序,实现基于STC12C5A60S2...

毕业设计-基于SpringBoot的知识管理系统-设计与实现(源码+LW+演示视频).zip

【项目技术】 开发语言:Java 框架:springboot 架构:B/S 数据库:mysql 通过分析企业对于知识管理系统的需求,创建了一个计算机管理知识管理系统的方案。文章介绍了知识管理系统的系统分析部分,包括可行性分析等,系统设计部分主要介绍了系统功能设计和数据库设计。 本知识管理系统有管理员和用户两个角色。管理员功能有 个人中心,用户管理,文章分类管理,文章信息管理,资料分类管理,资料下载管理,问答管理,论坛交流,留言板管理,系统管理等。用户功能有个人中心,文章信息管理,资料下载管理,问答管理,我的收藏管理。因而具有一定的实用性。 本站是一个B/S模式系统,采用Spring Boot框架作为后台开发技术,前端框架是VUE,MYSQL数据库设计开发,充分保证系统的稳定性。系统具有界面清晰、操作简单,功能齐全的特点,使得知识管理系统管理工作系统化、规范化。 关键词:知识管理系统;Spring Boot框架;MYSQL数据库;VUE框架

同步原理PPT学习教案.pptx

同步原理PPT学习教案.pptx文件是关于同步原理的学习教案,主要讨论了载波同步、位同步、群同步以及网络同步等内容。在数字通信系统中,确保接收端能够准确、可靠地接收发送端传输的信息是至关重要的。因此,了解和掌握同步原理对于数字通信工程师和学生来说非常重要。 载波同步是指在相干解调时,接收端需要获取一个与发送端同频同相的相干载波。这个载波的获取称为载波提取或载波同步。在数字通信系统中,保证接收端能够准确地同步发送端的载波是十分关键的。位同步又称码元同步,为了得到抽样周期,保证相位一致。在数字通信系统中,接收端需要知道每个码元的起止时刻,以便在恰当的时刻进行取样判决。群同步有时也称帧同步,包含字同步、句同步、分路同步。在数字通信中,信息流是用若干码元组成一个“字”,又用若干个“字”组成“句”。在接收这些数字信息时,必须知道这些“字”、“句”的起止时刻,否则接收端无法正确恢复信息。这些同步原理的掌握和应用对数字通信的准确性和可靠性至关重要。 在获得了以上讨论的载波同步、位同步、群同步之后,两点间的数字通信就可以有序、准确、可靠地进行了。然而,随着数字通信的发展,尤其是计算机通信的发展,多个用户之间的通信已经不再局限于点对点的通信,而是扩展到多网之间的通信。因此,网络同步也成为了一个关键的同步原理。网络同步是指在跨越多个网络的情况下,保证数据传输的时间同步。这对于多用户之间的数据交互来说非常重要,因为如果数据传输的时间不同步,就会导致数据的混乱和错误。因此,了解和掌握网络同步原理对于现代数字通信系统的设计和应用也是十分重要的。 综上所述,同步原理PPT学习教案.pptx文件详细介绍了载波同步、位同步、群同步和网络同步的概念和原理。这些同步原理对于数字通信工程师和学生来说都是十分重要的基础知识。对于数字通信系统的设计和应用来说,掌握这些同步原理可以有效地提高系统的准确性和可靠性。因此,建议有关人员认真学习和掌握这些同步原理,以提高其在数字通信领域的专业能力和素质。

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire

Vue.js SSR服务端渲染实践经验分享

# 1. 介绍SSR及其在Vue.js中的作用 ## 1.1 什么是SSR 在Web开发中,SSR指的是服务器端渲染(Server-Side Rendering),即在服务器端将页面模板和数据结合后生成最终的HTML页面,再将HTML页面发送给客户端。相对应的概念是CSR(Client-Side Rendering),即采用JavaScript在客户端进行页面渲染。 ## 1.2 为什么在Vue.js中使用SSR 在Vue.js中使用SSR可以提升首屏加载速度、改善搜索引擎优化(SEO)并改善用户体验。SSR可以让搜索引擎更容易抓取页面内容,因为页面的内容已经在服务端生成。此外,SSR

coxph模型的summary函数以后得到的是什么,分别分析一下

coxph模型是用来拟合生存分析数据的模型,它可以用来评估某些预测变量对于生存时间的影响。在R语言中,当我们用coxph函数拟合模型后,可以使用summary函数来查看模型的摘要信息。 使用summary函数得到的是一个类似于表格的输出结果,其中包含了以下信息: 1. Model:显示了使用的模型类型,这里是Cox Proportional Hazards Model。 2. Call:显示了生成模型的函数及其参数。 3. n:数据集中观测值的数量。 4. Events:数据集中事件(即生存时间结束)的数量。 5. Log-likelihood:给定模型下的对数似然值。 6. C

SerDes知识详解一、SerDes的作用.pdf

)上重新同步时钟和数据信号来解决这些问题,但是这些信号再次变得异步的时候,这些问题就会重新出现。 SerDes 技术的引入,将并行数据转换为串行,通过串行链路传送数据,从而有效的克服了以上问题。 SerDes 技术是解决高速芯片之间通信的有效方式,它使芯片之间的通信速率提高了几个数量级。同时 SerDes 技术传输距离更远、抗干扰性更强,这使得它在高速芯片之间的连接中更具有竞争力。 除了并行总线接口,减小 PCB 板 trace 相互干扰是 SerDes 的另一个很重要的应用,如:图1.2(PCB 板总线串扰)。 同理在系统内部芯片间通信过程中,信号与信号之间的串扰同样是我们需要考虑的问题之一。在板上、芯片内复杂的信号传输结构也使得芯片设计工程师需要借助SerDes 技术来克服这些问题。" SerDes技术在现代芯片通信领域起着至关重要的作用。在使用SerDes技术之前,芯片之间的互联主要依赖系统同步或源同步的并行接口传输数据。然而,随着接口频率的提高,出现了一系列问题,如时钟传播延时不相等、并行数据传播延时不相等以及时钟和数据的传播延时不一致等。尽管可以在目的芯片上重新同步时钟和数据信号来解决这些问题,但一旦信号再次变得异步,问题就会重新出现。因此,SerDes技术的引入成为解决高速芯片之间通信问题的有效方式。通过将并行数据转换为串行,SerDes技术通过串行链路传送数据,从而有效地克服了并行接口传输数据时出现的问题。SerDes技术不仅使芯片之间的通信速率提高了几个数量级,而且传输距离更远、抗干扰性更强,使得其在高速芯片之间的连接中更具有竞争力。除了在并行总线接口中的应用外,SerDes技术还在减小PCB板trace相互干扰以及在系统内部芯片间信号传输过程中的串扰问题中具有重要作用,使得芯片设计工程师能够更好地克服这些问题,提高系统性能。因此,SerDes技术的应用不仅在现代芯片通信领域中具有重要意义,而且在解决高速芯片通信问题中有着广泛的应用前景。

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依