void LCD_Write(unsigned char cmd,unsigned char isData) { delay_us(2000); //Hardcoding delay, keep waiting while the LCD is busy lcd1602_RS = isData; lcd1602_EN = 0; if(cmd&0x80)lcd1602_D7=1;else lcd1602_D7=0; if(cmd&0x40)lcd1602_D6=1;else lcd1602_D6=0; if(cmd&0x20)lcd1602_D5=1;else lcd1602_D5=0; if(cmd&0x10)lcd1602_D4=1;else lcd1602_D4=0; delay_us(2); lcd1602_EN=1; delay_us(2); lcd1602_EN=0; if(cmd&0x08)lcd1602_D7=1;else lcd1602_D7=0; if(cmd&0x04)lcd1602_D6=1;else lcd1602_D6=0; if(cmd&0x02)lcd1602_D5=1;else lcd1602_D5=0; if(cmd&0x01)lcd1602_D4=1;else lcd1602_D4=0; delay_us(2); lcd1602_EN=1; delay_us(2); lcd1602_EN=0; }解释

时间: 2023-12-06 10:42:18 浏览: 75
这是一段C语言代码,用于向LCD1602液晶屏写入指令或数据。其中,cmd表示要写入的数据或指令,isData为0时表示写入指令,为1时表示写入数据。代码中使用了硬编码的延迟函数,等待LCD屏幕忙碌状态结束后再进行写入操作。具体来说,该函数的步骤如下: 1. 等待LCD屏幕忙碌状态结束,大约需要2ms。 2. 根据isData的值,将RS引脚设置为指令或数据模式。 3. 根据cmd的值,将需要写入的指令或数据按位存放到D4-D7引脚上。 4. 等待2us。 5. 将EN引脚置高,以产生一个脉冲。 6. 等待2us。 7. 将EN引脚置低,以结束脉冲。 8. 将需要写入的指令或数据按位存放到D4-D7引脚上。 9. 等待2us。 10. 将EN引脚置高,以产生一个脉冲。 11. 等待2us。 12. 将EN引脚置低,以结束脉冲。
相关问题

解释这段代码:void LCD_WrCmd(unsigned char dat) { LCD_Write(dat,COMMAND); } void LCD_WrDat(unsigned char dat) { LCD_Write(dat,DATA); } void LCD_WrNUM(unsigned char dat) { LCD_WrDat(dat+'0'); }

这段代码定义了三个函数,分别为LCD_WrCmd、LCD_WrDat和LCD_WrNUM。 函数LCD_WrCmd的作用是向液晶屏写入指令,参数dat为一个字节的无符号整数。该函数调用了另外一个函数LCD_Write,将dat和COMMAND作为参数传入。其中,COMMAND是一个常量,表示写入的是指令而不是数据。 函数LCD_WrDat的作用是向液晶屏写入数据,参数dat为一个字节的无符号整数。该函数调用了LCD_Write函数,将dat和DATA作为参数传入。其中,DATA是一个常量,表示写入的是数据而不是指令。 函数LCD_WrNUM的作用是向液晶屏写入数字,参数dat为一个字节的无符号整数,表示要写入的数字。该函数先将数字转换为字符,然后调用LCD_WrDat函数写入字符。具体来说,它将dat加上字符'0',得到对应的ASCII码,然后调用LCD_WrDat函数写入该字符。

void LCD_ShowBinNum(unsigned char x, unsigned char y, unsigned int num, unsigned char len);

这是一个函数原型,它的作用是在LCD屏幕上显示二进制数。具体解释如下: - unsigned char x:二进制数在屏幕上的横坐标位置。 - unsigned char y:二进制数在屏幕上的纵坐标位置。 - unsigned int num:要显示的二进制数。 - unsigned char len:要显示的二进制数的位数。 函数实现的具体细节可能需要看函数的代码实现。

相关推荐

#include <reg52.h> #include <stdio.h> #define LCD1602_RS P2_0 // LCD1602?RS?? #define LCD1602_RW P2_1 // LCD1602?RW?? #define LCD1602_EN P2_2 // LCD1602?EN?? #define LCD1602_DATAPINS P0 // LCD1602????? sbit UART_RXD = P3^0; // ?????? sbit UART_TXD = P3^1; // ?????? void init_uart() // ????? { TMOD |= 0x20; // ?????1???2 TH1 = 0xfd; // ??????9600 TL1 = 0xfd; TR1 = 1; // ?????1 SCON = 0x50; // ???????1 ES = 1; // ?????? EA = 1; // ????? } void init_lcd() // ???LCD { LCD1602_RS = 0; LCD1602_RW = 0; LCD1602_EN = 0; delay_ms(15); lcd_write_cmd(0x38); // ??LCD?16x2????? delay_ms(5); lcd_write_cmd(0x0c); // ??LCD?? delay_ms(5); lcd_clear(); // ?? lcd_write_cmd(0x06); // ???????? } void lcd_write_cmd(unsigned char cmd) // ????LCD { LCD1602_RS = 0; LCD1602_DATAPINS = cmd; LCD1602_EN = 1; delay_us(2); LCD1602_EN = 0; delay_ms(1); } void lcd_write_data(unsigned char dat) // ????LCD { LCD1602_RS = 1; LCD1602_DATAPINS = dat; LCD1602_EN = 1; delay_us(2); LCD1602_EN = 0; delay_ms(1); } void lcd_clear() // ?? { lcd_write_cmd(0x01); } void lcd_set_cursor(unsigned char x, unsigned char y) // ?????? { unsigned char addr; if (y == 0) addr = 0x80 + x; else addr = 0xc0 + x; lcd_write_cmd(addr); } void lcd_puts(unsigned char x, unsigned char y, unsigned char *str) // ?????????? { lcd_set_cursor(x, y); while (*str != '\0') { lcd_write_data(*str); str++; } } void uart_isr() interrupt 4 // ???????? { if (RI) { RI = 0; lcd_write_data(SBUF); // ?????????LCD? } } void main() { init_uart(); init_lcd(); while (1); }

请帮我优化这段代码include <reg52.h> #include <stdio.h> #include <string.h> #define LCD_DATA P0 #define LCD_RS P2_0 #define LCD_RW P2_1 #define LCD_EN P2_2 #define LED_PIN P1_0 #define BUZZER_PIN P1_1 void delay(unsigned int ms); void LCD_init(); void LCD_command(unsigned char cmd); void LCD_data(unsigned char dat); void LCD_string(char *str); void LCD_clear(); void UART_init(); void UART_sendChar(unsigned char ch); void UART_sendString(char *str); unsigned char UART_receiveChar(); void executeCommand(char *command); void main() { char command[20]; UART_init(); LCD_init(); while (1) { if (UART_receiveChar() == ':') { UART_receiveChar(); // Ignore space after ':' fgets(command, sizeof(command), stdin); executeCommand(command); UART_sendString(command); // Send back the received command } } } void delay(unsigned int ms) { unsigned int i, j; for (i = 0; i < ms; i++) for (j = 0; j < 110; j++); } void LCD_init() { LCD_command(0x38); // 2 lines, 5x7 matrix LCD_command(0x0C); // Display on, cursor off LCD_command(0x06); // Increment cursor LCD_command(0x01); // Clear display delay(2); } void LCD_command(unsigned char cmd) { LCD_RS = 0; LCD_RW = 0; LCD_EN = 1; LCD_DATA = cmd; delay(2); LCD_EN = 0; } void LCD_data(unsigned char dat) { LCD_RS = 1; LCD_RW = 0; LCD_EN = 1; LCD_DATA = dat; delay(2); LCD_EN = 0; } void LCD_string(char *str) { while (*str) { LCD_data(*str++); } } void LCD_clear() { LCD_command(0x01); // Clear display delay(2); } void UART_init() { TMOD = 0x20; // Timer1 mode 2: 8-bit auto-reload TH1 = 0xFD; // 9600 baud rate SCON = 0x50; // Serial mode 1: 8-bit data, 1 stop bit, receive enabled TR1 = 1; // Start Timer1 } void UART_sendChar(unsigned char ch) { SBUF = ch; while (TI == 0); // Wait for transmission to complete TI = 0; // Clear transmission flag } void UART_sendString(char *str) { while (*str) { UART_sendChar(*str++); } } unsigned char UART_receiveChar() { while (RI == 0); // Wait for reception to complete RI = 0; // Clear reception flag return SBUF; } void executeCommand(char *command) { if (strncmp(command, "LED on", 6) == 0) { LED_PIN = 1; } else if (strncmp(command, "buzzer on", 9) == 0) { BUZZER_PIN = 1; } else if (strncmp(command, "showstr", 7) == 0) { char *str = command + 8; // Get the string after "showstr" LCD_clear(); LCD_command(0x80); // Move cursor to the beginning of the first line LCD_string(str); } }

#include <reg51.h> #define LCD_DB P0 sbit LCD_RS = P2^0; sbit LCD_RW = P2^1; sbit LCD_EN = P2^2; void init_lcd(); void write_command(unsigned char command); void write_data(unsigned char data); void display_string(unsigned char x, unsigned char y, unsigned char *string); void delay(unsigned int i); void main() { unsigned char i; unsigned char data_buffer[16] = "Hello, World!"; init_lcd(); display_string(0, 0, data_buffer); // ????? SCON = 0x50; TMOD = 0x20; TH1 = 0xFD; TL1 = 0xFD; TR1 = 1; while(1) { // ?????????? while(RI == 0); RI = 0; // ?????????????? data_buffer[0] = SBUF; // ?LCD????? display_string(0, 0, data_buffer); } } void init_lcd() { write_command(0x38); // ????:8????,2???,5x7???? write_command(0x0C); // ????:???,???,??? write_command(0x06); // ????:?????,????,????? write_command(0x01); // ????:????,???????? delay(10); // ??10?? } void write_command(unsigned char command) { LCD_RS = 0; LCD_RW = 0; LCD_DB = command; LCD_EN = 1; delay(5); LCD_EN = 0; } void write_data(unsigned char data) { LCD_RS = 1; LCD_RW = 0; LCD_DB = data; LCD_EN = 1; delay(5); LCD_EN = 0; } void display_string(unsigned char x, unsigned char y, unsigned char *string) { unsigned char i; if(x < 16) { if(y == 0) { write_command(0x80 + x); } else if(y == 1) { write_command(0xC0 + x); } else { return; } } else { return; } for(i = 0; string[i] != '\0' && i < 16 - x; i++) { write_data(string[i]); } } void delay(unsigned int i) { unsigned int j, k; for(j = 0; j < i; j++) { for(k = 0; k < 1000; k++); } }

最新推荐

recommend-type

Keil MDK-ARM各种数据类型占用的字节数 char short int float double

`signed char`和`unsigned char`分别表示有符号和无符号的8位整型。 2. **short int**: `short int`占用2个字节(16位),其最大值为32767,最小值为-32768。`unsigned short`则表示无符号的16位整型,范围从0到...
recommend-type

数据结构课程设计:模块化比较多种排序算法

本篇文档是关于数据结构课程设计中的一个项目,名为“排序算法比较”。学生针对专业班级的课程作业,选择对不同排序算法进行比较和实现。以下是主要内容的详细解析: 1. **设计题目**:该课程设计的核心任务是研究和实现几种常见的排序算法,如直接插入排序和冒泡排序,并通过模块化编程的方法来组织代码,提高代码的可读性和复用性。 2. **运行环境**:学生在Windows操作系统下,利用Microsoft Visual C++ 6.0开发环境进行编程。这表明他们将利用C语言进行算法设计,并且这个环境支持高效的性能测试和调试。 3. **算法设计思想**:采用模块化编程策略,将排序算法拆分为独立的子程序,比如`direct`和`bubble_sort`,分别处理直接插入排序和冒泡排序。每个子程序根据特定的数据结构和算法逻辑进行实现。整体上,算法设计强调的是功能的分块和预想功能的顺序组合。 4. **流程图**:文档包含流程图,可能展示了程序设计的步骤、数据流以及各部分之间的交互,有助于理解算法执行的逻辑路径。 5. **算法设计分析**:模块化设计使得程序结构清晰,每个子程序仅在被调用时运行,节省了系统资源,提高了效率。此外,这种设计方法增强了程序的扩展性,方便后续的修改和维护。 6. **源代码示例**:提供了两个排序函数的代码片段,一个是`direct`函数实现直接插入排序,另一个是`bubble_sort`函数实现冒泡排序。这些函数的实现展示了如何根据算法原理操作数组元素,如交换元素位置或寻找合适的位置插入。 总结来说,这个课程设计要求学生实际应用数据结构知识,掌握并实现两种基础排序算法,同时通过模块化编程的方式展示算法的实现过程,提升他们的编程技巧和算法理解能力。通过这种方式,学生可以深入理解排序算法的工作原理,同时学会如何优化程序结构,提高程序的性能和可维护性。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

STM32单片机小车智能巡逻车设计与实现:打造智能巡逻车,开启小车新时代

![stm32单片机小车](https://img-blog.csdnimg.cn/direct/c16e9788716a4704af8ec37f1276c4dc.png) # 1. STM32单片机简介及基础** STM32单片机是意法半导体公司推出的基于ARM Cortex-M内核的高性能微控制器系列。它具有低功耗、高性能、丰富的外设资源等特点,广泛应用于工业控制、物联网、汽车电子等领域。 STM32单片机的基础架构包括CPU内核、存储器、外设接口和时钟系统。其中,CPU内核负责执行指令,存储器用于存储程序和数据,外设接口提供与外部设备的连接,时钟系统为单片机提供稳定的时钟信号。 S
recommend-type

devc++如何监视

Dev-C++ 是一个基于 Mingw-w64 的免费 C++ 编程环境,主要用于 Windows 平台。如果你想监视程序的运行情况,比如查看内存使用、CPU 使用率、日志输出等,Dev-C++ 本身并不直接提供监视工具,但它可以在编写代码时结合第三方工具来实现。 1. **Task Manager**:Windows 自带的任务管理器可以用来实时监控进程资源使用,包括 CPU 占用、内存使用等。只需打开任务管理器(Ctrl+Shift+Esc 或右键点击任务栏),然后找到你的程序即可。 2. **Visual Studio** 或 **Code::Blocks**:如果你习惯使用更专业的
recommend-type

哈夫曼树实现文件压缩解压程序分析

"该文档是关于数据结构课程设计的一个项目分析,主要关注使用哈夫曼树实现文件的压缩和解压缩。项目旨在开发一个实用的压缩程序系统,包含两个可执行文件,分别适用于DOS和Windows操作系统。设计目标中强调了软件的性能特点,如高效压缩、二级缓冲技术、大文件支持以及友好的用户界面。此外,文档还概述了程序的主要函数及其功能,包括哈夫曼编码、索引编码和解码等关键操作。" 在数据结构课程设计中,哈夫曼树是一种重要的数据结构,常用于数据压缩。哈夫曼树,也称为最优二叉树,是一种带权重的二叉树,它的构造原则是:树中任一非叶节点的权值等于其左子树和右子树的权值之和,且所有叶节点都在同一层上。在这个文件压缩程序中,哈夫曼树被用来生成针对文件中字符的最优编码,以达到高效的压缩效果。 1. 压缩过程: - 首先,程序统计文件中每个字符出现的频率,构建哈夫曼树。频率高的字符对应较短的编码,反之则对应较长的编码。这样可以使得频繁出现的字符用较少的位来表示,从而降低存储空间。 - 接着,使用哈夫曼编码将原始文件中的字符转换为对应的编码序列,完成压缩。 2. 解压缩过程: - 在解压缩时,程序需要重建哈夫曼树,并根据编码序列还原出原来的字符序列。这涉及到索引编码和解码,通过递归函数如`indexSearch`和`makeIndex`实现。 - 为了提高效率,程序采用了二级缓冲技术,它能减少磁盘I/O次数,提高读写速度。 3. 软件架构: - 项目包含了两个可执行文件,`DosHfm.exe`适用于DOS系统,体积小巧,运行速度快;而`WinHfm.exe`则为Windows环境设计,提供了更友好的图形界面。 - 程序支持最大4GB的文件压缩,这是Fat32文件系统的限制。 4. 性能特点: - 除了基本的压缩和解压缩功能外,软件还提供了一些额外的特性,如显示压缩进度、文件一致性检查等。 - 哈夫曼编码的使用提高了压缩率,而二级缓冲技术使压缩速度提升了75%以上。 这个项目不仅展示了数据结构在实际问题中的应用,还体现了软件工程的实践,包括需求分析、概要设计以及关键算法的实现。通过这样的课程设计,学生可以深入理解数据结构和算法的重要性,并掌握实际编程技能。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠

![STM32单片机小车硬件优化策略:优化硬件设计,让小车更稳定更可靠](https://static.mianbaoban-assets.eet-china.com/xinyu-images/MBXY-CR-c138c506ec1b17b643c23c4884fd9882.png) # 1. STM32单片机小车硬件优化策略概述 STM32单片机小车在实际应用中,硬件优化至关重要。本文将深入探讨STM32单片机小车硬件优化策略,从硬件设计、元器件选型、安装、调试、可靠性到维护等方面进行全面的分析,旨在帮助开发者提升小车的性能、稳定性和使用寿命。 # 2. 硬件设计优化 硬件设计优化是S
recommend-type

android studio购物车源码

在Android Studio中,购物车功能通常涉及到一个应用中的UI设计、数据管理、以及可能的网络请求。源码通常包含以下几个主要部分: 1. **UI组件**:如RecyclerView用于展示商品列表,每个商品项可能是Adapter中的ViewHolder。会有一个添加到购物车按钮和一个展示当前购物车内容的部分。 2. **数据模型**:商品类(通常包含商品信息如名称、价格、图片等)、购物车类(可能存储商品列表、总价等)。 3. **添加/删除操作**:在用户点击添加到购物车时,会处理商品的添加逻辑,并可能更新数据库或缓存。 4. **数据库管理**:使用SQLite或其他持久化解
recommend-type

数据结构课程设计:电梯模拟与程序实现

"该资源是山东理工大学计算机学院的一份数据结构课程设计,主题为电梯模拟,旨在帮助学生深化对数据结构的理解,并通过实际编程提升技能。这份文档包含了设计任务的详细说明、进度安排、参考资料以及成绩评定标准。" 在这次课程设计中,学生们需要通过电梯模拟的案例来学习和应用数据结构。电梯模拟的目标是让学生们: 1. 熟练掌握如数组、链表、栈、队列等基本数据结构的操作。 2. 学会根据具体问题选择合适的数据结构,设计算法,解决实际问题。 3. 编写代码实现电梯模拟系统,包括电梯的调度、乘客请求处理等功能。 设计进度分为以下几个阶段: - 2013年1月7日:收集文献资料,完成系统分析。 - 2013年1月10日:创建相关数据结构,开始编写源程序。 - 2013年1月13日:调试程序,记录问题,初步完成课程设计报告。 - 2013年1月15日:提交课程设计报告打印版,进行答辩。 - 2013年1月16日:提交电子版报告和源代码。 参考文献包括了严蔚敏的《数据结构》和《数据结构题集》,谭浩强的《C语言程序设计》以及与所选编程环境相关的C或C++资料,这些都是进行课程设计的重要参考资料。 在成绩评定部分,设计成绩由指导教师填写,并需要在设计结束后进行总结与心得的撰写,这有助于学生反思学习过程,提炼经验。 整个课程设计涵盖了从问题分析、设计、实现到测试的完整过程,对于提升学生的编程能力和问题解决能力具有重要意义。《数据结构》课程是计算机科学教育的基础,通过这样的实践项目,学生们能够更好地理解和运用所学知识,为未来的专业发展打下坚实基础。