feed forward
时间: 2023-09-04 19:14:23 浏览: 187
Feed Forward是一种前馈神经网络,也被称为多层感知器(MLP)。它是一种基本的神经网络模型,其输入信号从输入层开始,通过一层一层的传递,最终到达输出层,不会产生循环。这意味着每个神经元只接收来自前一层的输入信号,而不会接收来自后一层的信号。在每一层中,输入信号被加权和,并通过一个非线性激活函数进行转换,然后输出到下一层。每一层可以有任意数量的神经元,但通常包含一个固定数量的神经元。 Feed Forward网络通常用于分类和回归问题。
相关问题
Feed forward equalizers
Feed forward equalizers (FFE) are a type of signal processing technique used in communication systems to improve the quality of the transmitted signal. FFEs are used to compensate for signal distortion caused by channel impairments such as attenuation, dispersion, and noise.
An FFE works by using a reference signal that is delayed and attenuated to match the distortion in the received signal. The delayed and attenuated signal is then subtracted from the received signal, leaving only the desired signal. The FFE adjusts the delay and attenuation of the reference signal to match the changing characteristics of the channel and provide a more accurate equalization of the signal.
FFE is commonly used in digital communication systems, such as Ethernet, to improve the signal quality and increase the data transmission rate. It is also used in wireless communication systems to compensate for multipath fading and other signal distortions.
Overall, feed forward equalizers are an important tool in the signal processing toolbox for improving the quality and reliability of communication systems.
Feed forward是什么
"Feed forward"是机器学习中常用的一种神经网络结构。它是指信号在神经网络中单向传递,从输入层到输出层,不进行反馈。在神经网络的每一层中,输入信号经过线性变换和激活函数的处理后,得到输出信号,再传递到下一层。
在深度学习中,"Feed forward"通常指的是前向传播算法(Forward Propagation),是神经网络中的一种计算方法,用于计算输入信号在网络中的传递和变换过程,得到输出结果。前向传播算法从输入层开始,通过对每一层进行线性变换和激活函数的处理,得到最终的输出结果。这个过程可以用矩阵相乘和激活函数的向量化操作来实现,从而加快计算速度。在训练神经网络时,前向传播算法用于计算模型的预测输出结果,并将其与真实值进行比较,从而计算出误差,并进行反向传播更新模型参数,以提高模型的准确性。
阅读全文