python对银行数据bank.csv已有数据进行分析,对客户进行识别,对客户是否能够进行存款精准营销
时间: 2024-02-04 19:03:35 浏览: 82
好的,针对银行数据 `bank.csv` 进行客户识别和精准营销预测,我们可以采用以下步骤:
1. 导入必要的库和数据集
```
import pandas as pd
import numpy as np
from sklearn.preprocessing import LabelEncoder
from sklearn.model_selection import train_test_split
from sklearn.tree import DecisionTreeClassifier
from sklearn.metrics import accuracy_score
# 导入数据集
data = pd.read_csv('bank.csv', delimiter=';')
```
2. 数据集预处理
```
# 删除缺失值
data = data.dropna()
# 将分类数据转换为数值数据
le = LabelEncoder()
data['job'] = le.fit_transform(data['job'])
data['marital'] = le.fit_transform(data['marital'])
data['education'] = le.fit_transform(data['education'])
data['default'] = le.fit_transform(data['default'])
data['housing'] = le.fit_transform(data['housing'])
data['loan'] = le.fit_transform(data['loan'])
data['contact'] = le.fit_transform(data['contact'])
data['month'] = le.fit_transform(data['month'])
data['day_of_week'] = le.fit_transform(data['day_of_week'])
data['poutcome'] = le.fit_transform(data['poutcome'])
data['y'] = le.fit_transform(data['y'])
```
3. 特征选择和模型训练
```
# 特征选择
X = data.drop(['y'], axis=1)
y = data['y']
# 划分数据集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
# 训练模型
clf = DecisionTreeClassifier(random_state=0)
clf.fit(X_train, y_train)
y_pred = clf.predict(X_test)
```
4. 模型评估和预测
```
# 模型评估
accuracy = accuracy_score(y_pred, y_test)
print('Accuracy:', accuracy)
# 进行预测
new_data = np.array([30, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1])
new_data = new_data.reshape(1, -1)
prediction = clf.predict(new_data)
print('Prediction:', prediction)
```
这里的代码中,我们选择决策树模型来进行预测,可以根据实际情况选择其他的分类模型。同时,可以通过调整特征选择和模型参数来提高预测的准确率。
阅读全文