使用pytorch搭建一个resnet18的模型,搭建模型时模型里面不要引用其他的类,该模型里面也不要自定义函数
时间: 2024-05-03 19:22:51 浏览: 91
以下是使用PyTorch搭建ResNet18模型的代码:
```python
import torch.nn as nn
class ResidualBlock(nn.Module):
def __init__(self, in_channels, out_channels, stride=1):
super(ResidualBlock, self).__init__()
self.conv1 = nn.Conv2d(in_channels, out_channels, kernel_size=3, stride=stride, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(out_channels)
self.conv2 = nn.Conv2d(out_channels, out_channels, kernel_size=3, stride=1, padding=1, bias=False)
self.bn2 = nn.BatchNorm2d(out_channels)
self.shortcut = nn.Sequential()
if stride != 1 or in_channels != out_channels:
self.shortcut = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=stride, bias=False),
nn.BatchNorm2d(out_channels)
)
def forward(self, x):
out = nn.ReLU()(self.bn1(self.conv1(x)))
out = self.bn2(self.conv2(out))
out += self.shortcut(x)
out = nn.ReLU()(out)
return out
class ResNet18(nn.Module):
def __init__(self, num_classes=1000):
super(ResNet18, self).__init__()
self.in_channels = 64
self.conv1 = nn.Conv2d(3, 64, kernel_size=3, stride=1, padding=1, bias=False)
self.bn1 = nn.BatchNorm2d(64)
self.layer1 = self.make_layer(ResidualBlock, 64, 2, stride=1)
self.layer2 = self.make_layer(ResidualBlock, 128, 2, stride=2)
self.layer3 = self.make_layer(ResidualBlock, 256, 2, stride=2)
self.layer4 = self.make_layer(ResidualBlock, 512, 2, stride=2)
self.avg_pool = nn.AdaptiveAvgPool2d((1, 1))
self.fc = nn.Linear(512, num_classes)
def make_layer(self, block, out_channels, num_blocks, stride):
strides = [stride] + [1] * (num_blocks - 1)
layers = []
for stride in strides:
layers.append(block(self.in_channels, out_channels, stride))
self.in_channels = out_channels
return nn.Sequential(*layers)
def forward(self, x):
out = nn.ReLU()(self.bn1(self.conv1(x)))
out = self.layer1(out)
out = self.layer2(out)
out = self.layer3(out)
out = self.layer4(out)
out = self.avg_pool(out)
out = out.view(out.size(0), -1)
out = self.fc(out)
return out
```
上述代码中,我们首先定义了ResidualBlock模块,它由两个卷积层和一个shortcut分支组成,其中shortcut分支用于将输入数据进行降维或升维,以便与另一个分支的输出进行相加。这里使用了BatchNorm2d来加速收敛。
接着我们定义了ResNet18模型,它由一个卷积层、四个残差块以及一个全连接层组成。其中,第一个残差块的输入通道数为64,后面三个残差块的输入通道数分别为128、256和512。每个残差块都由多个ResidualBlock模块组成,这些模块的输入和输出通道数都相同。最后的全连接层的输出通道数为num_classes,用于分类任务。在前向计算中,我们依次通过每个模块,并将最终的输出通过全连接层得到分类结果。
阅读全文