基于spring batch,写一段代码,逻辑为通过itemreadr读取DB2数据库获取数据,通过itemprossor判断数据中的日期是否大于当前
时间: 2024-01-22 21:17:15 浏览: 72
的日期,如果大于则将数据写入到CSV文件中。
```java
@Configuration
@EnableBatchProcessing
public class BatchConfig {
@Autowired
public JobBuilderFactory jobBuilderFactory;
@Autowired
public StepBuilderFactory stepBuilderFactory;
@Autowired
public DataSource dataSource;
@Bean
public Job exportJob() {
return jobBuilderFactory.get("exportJob")
.incrementer(new RunIdIncrementer())
.flow(exportStep())
.end()
.build();
}
@Bean
public Step exportStep() {
return stepBuilderFactory.get("exportStep")
.<MyData, MyData>chunk(10)
.reader(reader())
.processor(processor())
.writer(writer())
.build();
}
@Bean
public JdbcCursorItemReader<MyData> reader() {
JdbcCursorItemReader<MyData> reader = new JdbcCursorItemReader<>();
reader.setDataSource(dataSource);
reader.setSql("SELECT * FROM MY_TABLE");
reader.setRowMapper(new BeanPropertyRowMapper<>(MyData.class));
return reader;
}
@Bean
public ItemProcessor<MyData, MyData> processor() {
return item -> {
LocalDate currentDate = LocalDate.now();
if (item.getDate().isAfter(currentDate)) {
return item;
} else {
return null;
}
};
}
@Bean
public FlatFileItemWriter<MyData> writer() {
FlatFileItemWriter<MyData> writer = new FlatFileItemWriter<>();
writer.setResource(new FileSystemResource("output.csv"));
DelimitedLineAggregator<MyData> lineAggregator = new DelimitedLineAggregator<>();
lineAggregator.setDelimiter(",");
BeanWrapperFieldExtractor<MyData> fieldExtractor = new BeanWrapperFieldExtractor<>();
fieldExtractor.setNames(new String[] {"id", "name", "date"});
lineAggregator.setFieldExtractor(fieldExtractor);
writer.setLineAggregator(lineAggregator);
return writer;
}
}
```
上述代码中,我们定义了一个`exportJob`和一个`exportStep`,并且在`exportStep`中配置了一个`reader`、一个`processor`和一个`writer`。其中`reader`使用了`JdbcCursorItemReader`来从DB2数据库中读取数据,`processor`判断数据中的日期是否大于当前日期,`writer`将符合要求的数据写入到CSV文件中。最后我们在`exportJob`中添加了一个`RunIdIncrementer`,以确保每次运行时都会生成一个新的实例。
阅读全文