请优化(不是并行化,而是从cache、函数调用开销、编译等方面优化)下面的串行程序,测试每个优化措施的效果。用Linux环境,编译器不限(gcc,icc等都可以)。以报告形式上传。 #include <stdio.h> #include <stdlib.h> #include <math.h> #define M 1500 #define NM 2000 #define N 2500 void generate_matrix(double *A, long m, long n) {     long i, j;     for (i=0; i<m; i++)         for (j=0; j<n; j++) {             A[i*n + j] = rand()/(RAND_MAX+1.0); //0 - 1             A[i*n + j] = 2*A[i*n + j] - 1;  //-1 - +1         } } double handle_data(double data) {     return sqrt(fabs(data)); } void handle_matrix(double *A, double *B, double *C, long m, long nm, long n) {     long i, j, k;     double s;     for (i=0; i<m; i++) {         for (j=0; j<n; j++) {             s = 0;             for (k=0; k<nm; k++)                 s += A[i*nm + k] * B[k*n + j];             C[i*n + j] = handle_data(s);         }     } } double sum_matrix(double *A, long m, long n) {     long i, j;     double s = 0;     for (i=0; i<m; i++)          for (j=0; j<n; j++)              s += A[i*n + j];     return s; } int main() {     double *A = (double *)malloc(M * NM * sizeof(double));     double *B = (double *)malloc(NM * N * sizeof(double));     double *C = (double *)malloc(M * N * sizeof(double));          generate_matrix(A, M, NM);     generate_matrix(B, NM, N);          struct timeval begin_time, end_time;     double run_time_ms;     gettimeofday(&begin_time);     handle_matrix(A, B, C, M, NM, N);     gettimeofday(&end_time);     run_time_ms =         (end_time.tv_sec - begin_time.tv_sec)*1000 +         (end_time.tv_usec - begin_time.tv_usec)*1.0/1000;     printf("run_time = %lfms\n", run_time_ms);     printf("Sum = %.4f\n", sum_matrix(C, M, N));          free(A);     free(B);     free(C);     return 0; }

时间: 2023-05-27 22:06:59 浏览: 83
首先,需要分析程序的瓶颈所在,确定需要优化的方向。常见的优化方向包括以下几个方面: 1. 缓存优化:尽量避免缓存未命中,尽量利用CPU的缓存。可以通过改变数据结构布局,使得数据在内存中的位置更加紧凑,提高数据的局部性,减少缓存未命中率。 2. 函数调用开销优化:尽量减少函数调用的次数。可以将一些简单的函数内联,避免额外的函数调用开销。 3. 编译优化:使用编译器提供的优化选项,如-O2、-O3等。同时,可以使用编译器提供的profile工具,分析程序的热点函数,优化热点函数的性能。 4. 并行化优化:使用多线程或者多进程并行化程序,充分利用多核CPU的性能。 针对不同的优化方向,可以采取以下措施: 1. 缓存优化:可以使用结构体代替数组,将数据紧凑的存储在内存中;使用循环展开,减少缓存未命中率。 2. 函数调用开销优化:可以使用宏或者内联函数代替函数调用,减少函数调用的开销。 3. 编译优化:使用编译器提供的优化选项,如-O2、-O3等,优化编译器生成的代码;使用profile工具分析程序的热点函数,优化热点函数的性能。 4. 并行化优化:使用多线程或者多进程并行化程序,充分利用多核CPU的性能。可以使用OpenMP或者MPI等并行编程框架。 在优化程序时,需要注意以下几个问题: 1. 优化不是万能的,需要根据具体情况进行选择。 2. 优化需要权衡,可能会牺牲代码的可读性、可维护性等方面的因素。 3. 优化需要测试,需要对每个优化措施进行测试,确定其对程序性能的影响。 4. 优化需要持续进行,程序的优化是一个持续的过程,需要不断地寻找新的优化方案。 最后,需要注意在优化程序时,需要遵循代码规范,保证代码的可读性和可维护性。同时,需要注重程序的正确性,避免因为优化而引入新的bug。
阅读全文

相关推荐

最新推荐

recommend-type

FPGA高级设计实例-时序优化之设计结构扁平化

相反,`regwriteb`采用了无优先级的if结构,每个条件分支独立且并行执行。这样做的好处是,当所有分支都包含相同的操作时,可以消除优先级编码带来的额外延迟。在Quartus II中编译`regwriteb`后(如图2所示),我们...
recommend-type

现代体系结构的优化编译器(带封面+英文版+文字可复制)

此外,本章还介绍了简单的依赖性测试方法以及并行化和向量化策略,包括一个先进的向量化算法。 第3章则专注于依赖性测试,这是优化编译器的关键组成部分。作者从背景和术语开始,解释了索引和下标、非线性、保守...
recommend-type

Mysql优化之Zabbix分区优化

分区优化的基本原理是对`history`和`trends`表按照日期进行划分,每个分区代表一天的数据,最多保留90天的分区。这样可以有效地分散数据,提高查询速度,因为数据库可以更快地定位到特定时间段的数据,而无需扫描...
recommend-type

webpack打包优化的几个方法总结

Webpack 打包优化是提升应用性能的关键步骤,尤其是在大型项目中,优化打包过程能有效减少文件大小、提高加载速度,并优化用户体验。以下是一些常用的webpack打包优化方法: 1. **按需加载(懒加载)** - **路由...
recommend-type

Linux系统启动时间的极限优化

6. 设备初始化,例如Intel E1000网卡,优化可能涉及驱动程序优化或硬件配置调整。 对于消费类电子产品和嵌入式Linux,CELF提供了专门的启动优化方案,如"RTCNoSync"和"PresetLatency"等,这些技术可以帮助减少特定...
recommend-type

正整数数组验证库:确保值符合正整数规则

资源摘要信息:"validate.io-positive-integer-array是一个JavaScript库,用于验证一个值是否为正整数数组。该库可以通过npm包管理器进行安装,并且提供了在浏览器中使用的方案。" 该知识点主要涉及到以下几个方面: 1. JavaScript库的使用:validate.io-positive-integer-array是一个专门用于验证数据的JavaScript库,这是JavaScript编程中常见的应用场景。在JavaScript中,库是一个封装好的功能集合,可以很方便地在项目中使用。通过使用这些库,开发者可以节省大量的时间,不必从头开始编写相同的代码。 2. npm包管理器:npm是Node.js的包管理器,用于安装和管理项目依赖。validate.io-positive-integer-array可以通过npm命令"npm install validate.io-positive-integer-array"进行安装,非常方便快捷。这是现代JavaScript开发的重要工具,可以帮助开发者管理和维护项目中的依赖。 3. 浏览器端的使用:validate.io-positive-integer-array提供了在浏览器端使用的方案,这意味着开发者可以在前端项目中直接使用这个库。这使得在浏览器端进行数据验证变得更加方便。 4. 验证正整数数组:validate.io-positive-integer-array的主要功能是验证一个值是否为正整数数组。这是一个在数据处理中常见的需求,特别是在表单验证和数据清洗过程中。通过这个库,开发者可以轻松地进行这类验证,提高数据处理的效率和准确性。 5. 使用方法:validate.io-positive-integer-array提供了简单的使用方法。开发者只需要引入库,然后调用isValid函数并传入需要验证的值即可。返回的结果是一个布尔值,表示输入的值是否为正整数数组。这种简单的API设计使得库的使用变得非常容易上手。 6. 特殊情况处理:validate.io-positive-integer-array还考虑了特殊情况的处理,例如空数组。对于空数组,库会返回false,这帮助开发者避免在数据处理过程中出现错误。 总结来说,validate.io-positive-integer-array是一个功能实用、使用方便的JavaScript库,可以大大简化在JavaScript项目中进行正整数数组验证的工作。通过学习和使用这个库,开发者可以更加高效和准确地处理数据验证问题。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练

![【损失函数与随机梯度下降】:探索学习率对损失函数的影响,实现高效模型训练](https://img-blog.csdnimg.cn/20210619170251934.png?x-oss-process=image/watermark,type_ZmFuZ3poZW5naGVpdGk,shadow_10,text_aHR0cHM6Ly9ibG9nLmNzZG4ubmV0L3FxXzQzNjc4MDA1,size_16,color_FFFFFF,t_70) # 1. 损失函数与随机梯度下降基础 在机器学习中,损失函数和随机梯度下降(SGD)是核心概念,它们共同决定着模型的训练过程和效果。本
recommend-type

在ADS软件中,如何选择并优化低噪声放大器的直流工作点以实现最佳性能?

在使用ADS软件进行低噪声放大器设计时,选择和优化直流工作点是至关重要的步骤,它直接关系到放大器的稳定性和性能指标。为了帮助你更有效地进行这一过程,推荐参考《ADS软件设计低噪声放大器:直流工作点选择与仿真技巧》,这将为你提供实用的设计技巧和优化方法。 参考资源链接:[ADS软件设计低噪声放大器:直流工作点选择与仿真技巧](https://wenku.csdn.net/doc/9867xzg0gw?spm=1055.2569.3001.10343) 直流工作点的选择应基于晶体管的直流特性,如I-V曲线,确保工作点处于晶体管的最佳线性区域内。在ADS中,你首先需要建立一个包含晶体管和偏置网络
recommend-type

系统移植工具集:镜像、工具链及其他必备软件包

资源摘要信息:"系统移植文件包通常包含了操作系统的核心映像、编译和开发所需的工具链以及其他辅助工具,这些组件共同作用,使得开发者能够在新的硬件平台上部署和运行操作系统。" 系统移植文件包是软件开发和嵌入式系统设计中的一个重要概念。在进行系统移植时,开发者需要将操作系统从一个硬件平台转移到另一个硬件平台。这个过程不仅需要操作系统的系统镜像,还需要一系列工具来辅助整个移植过程。下面将详细说明标题和描述中提到的知识点。 **系统镜像** 系统镜像是操作系统的核心部分,它包含了操作系统启动、运行所需的所有必要文件和配置。在系统移植的语境中,系统镜像通常是指操作系统安装在特定硬件平台上的完整副本。例如,Linux系统镜像通常包含了内核(kernel)、系统库、应用程序、配置文件等。当进行系统移植时,开发者需要获取到适合目标硬件平台的系统镜像。 **工具链** 工具链是系统移植中的关键部分,它包括了一系列用于编译、链接和构建代码的工具。通常,工具链包括编译器(如GCC)、链接器、库文件和调试器等。在移植过程中,开发者使用工具链将源代码编译成适合新硬件平台的机器代码。例如,如果原平台使用ARM架构,而目标平台使用x86架构,则需要重新编译源代码,生成可以在x86平台上运行的二进制文件。 **其他工具** 除了系统镜像和工具链,系统移植文件包还可能包括其他辅助工具。这些工具可能包括: - 启动加载程序(Bootloader):负责初始化硬件设备,加载操作系统。 - 驱动程序:使得操作系统能够识别和管理硬件资源,如硬盘、显卡、网络适配器等。 - 配置工具:用于配置操作系统在新硬件上的运行参数。 - 系统测试工具:用于检测和验证移植后的操作系统是否能够正常运行。 **文件包** 文件包通常是指所有这些组件打包在一起的集合。这些文件可能以压缩包的形式存在,方便下载、存储和传输。文件包的名称列表中可能包含如下内容: - 操作系统特定版本的镜像文件。 - 工具链相关的可执行程序、库文件和配置文件。 - 启动加载程序的二进制代码。 - 驱动程序包。 - 配置和部署脚本。 - 文档说明,包括移植指南、版本说明和API文档等。 在进行系统移植时,开发者首先需要下载对应的文件包,解压后按照文档中的指导进行操作。在整个过程中,开发者需要具备一定的硬件知识和软件开发经验,以确保操作系统能够在新的硬件上正确安装和运行。 总结来说,系统移植文件包是将操作系统和相关工具打包在一起,以便于开发者能够在新硬件平台上进行系统部署。了解和掌握这些组件的使用方法和作用是进行系统移植工作的重要基础。