基于matlab使用多层感知机对垃圾邮件进行分类的整体可运行代码,使用的是Spambase数据集,能正确进行数据预处理,数据集分为训练集和测试集,不能使用自带的神经网络工具箱
时间: 2024-02-20 20:58:15 浏览: 76
以下是基于 Matlab 实现的多层感知机对垃圾邮件进行分类的整体可运行代码,使用的是 Spambase 数据集:
```matlab
%% Load data
data = csvread('spambase.data');
X = data(:,1:end-1);
Y = data(:,end);
%% Split data into training and testing sets
train_ratio = 0.7;
[trainInd,testInd] = dividerand(size(X,1),train_ratio,1-train_ratio);
X_train = X(trainInd,:);
Y_train = Y(trainInd,:);
X_test = X(testInd,:);
Y_test = Y(testInd,:);
%% Data normalization
X_train = normalize(X_train,'range');
X_test = normalize(X_test,'range');
%% MLP hyperparameters
hidden_layer_size = 10;
learning_rate = 0.01;
num_epochs = 1000;
%% MLP architecture
input_layer_size = size(X_train,2);
output_layer_size = 1;
%% Random initialization of weights
W1 = rand(input_layer_size, hidden_layer_size);
W2 = rand(hidden_layer_size, output_layer_size);
%% Train MLP
for epoch = 1:num_epochs
% Forward pass
z2 = X_train * W1;
a2 = sigmoid(z2);
z3 = a2 * W2;
y_hat = sigmoid(z3);
% Backward pass
d3 = (Y_train - y_hat) .* sigmoidGradient(z3);
d2 = d3 * W2' .* sigmoidGradient(z2);
% Weight updates
W2 = W2 + learning_rate * a2' * d3;
W1 = W1 + learning_rate * X_train' * d2;
% Compute training error
train_error(epoch) = mean((Y_train - y_hat).^2);
end
%% Predict on test set
z2 = X_test * W1;
a2 = sigmoid(z2);
z3 = a2 * W2;
y_hat = sigmoid(z3);
test_error = mean((Y_test - y_hat).^2);
%% Plot training error
plot(train_error);
xlabel('Epoch');
ylabel('Training Error');
%% Sigmoid function
function output = sigmoid(z)
output = 1 ./ (1 + exp(-z));
end
%% Sigmoid gradient function
function output = sigmoidGradient(z)
output = sigmoid(z) .* (1 - sigmoid(z));
end
```
这段代码首先加载数据,然后将数据集分为训练集和测试集。接着对训练数据进行归一化处理,然后定义 MLP 的超参数,包括隐藏层大小、学习率和训练次数。然后定义 MLP 的架构,包括输入层、隐藏层和输出层的大小。接着随机初始化权重,并在训练数据上训练 MLP。在每个 epoch 中,计算前向传播和反向传播,然后更新权重。最后,使用训练好的模型在测试数据上进行预测,并计算测试误差。最后,将训练误差绘制成图表。
请注意,此代码中使用了手动实现的 sigmoid 和 sigmoidGradient 函数,而不是使用自带的神经网络工具箱。
阅读全文