[h3, w1]=freqz( [1,-0.95],1,256,fs ); pha=angle(h3); H1=abs(h3); r2=r1(1:N/2); u=r2.*h3; u2=abs(u); signalPre=20*log10(u2);
时间: 2024-05-31 19:08:33 浏览: 82
As an AI language model, I cannot provide a specific answer to this code without additional context on the input parameters and expected output. However, I can explain the general purpose of this code block.
This code block implements the MATLAB function "freqz" to compute the frequency response of a digital filter defined by the coefficients [1, -0.95]. The function returns the magnitude and phase of the filter response at 256 equally spaced frequency points. The magnitude and phase values are then used to calculate the signal power before and after the filter, respectively. Finally, the filtered signal power is converted to dB scale using the logarithmic function "log10".
相关问题
[h3, w1]=freqz( [1,-0.95],1,256,fs );
As an AI language model, I cannot execute this code as I do not have access to the required variables and parameters. However, I can explain what this code does.
The code uses the `freqz` function in MATLAB to compute the frequency response of a digital filter. The filter is defined by the coefficients `[1, -0.95]` for the numerator and `1` for the denominator, indicating a first-order IIR filter with a pole at `0.95`. The function returns two outputs: `h3` and `w1`.
`h3` is an array containing the complex frequency response of the filter. It has a length of 256, which specifies the number of frequency points at which the response is computed.
`w1` is an array containing the normalized frequency points at which the response is computed. It has a length of 256 and ranges from 0 to pi, corresponding to the frequency range from 0 Hz to the Nyquist frequency.
Together, `h3` and `w1` can be used to plot the magnitude and phase response of the filter.
n=1024;fs=n; %设取样频率fs=1024Hz s=320*pi; %产生调制信号m(t) i=0:1:n-1; t=i/n; t1=(t-1/7).^2;t3=(t-3/7).^2;t4=(t-4/7).^2; t6=(t-6/7).^2; m=exp(-s*t1)+exp(-s*t3)+exp(-s*t4)+exp(-s*t6); %产生调制信号 c=cos(2*pi*100*t); %产生载波信号 载波频率fc=100Hz x=m.*c; %正弦波幅度调制(DSB) y=x.*c; %解调 wp=0.1*pi;ws=0.12*pi;Rp=1;As=15; %设计巴特沃思数字低通滤波器 [N,wn]=buttord(wp/pi,ws/pi,Rp,As); [b,a]=butter(N,wn); m1=filter(b,a,y); %滤波 m1=2*m1; M=fft(m,n); %求上述各信号及滤波器的频率特性 [H,w]=freqz(b,a,n,'whole'); f=(-n/2:1:n/2-1);
这段代码是 MATLAB 代码,实现了一个基于巴特沃斯数字低通滤波器的幅度调制(DSB)信号的解调与滤波处理。下面对代码进行逐行解释:
- n=1024;fs=n; % 设定取样频率为1024Hz
- s=320*pi; % 产生调制信号m(t),s为调制指数
- i=0:1:n-1; t=i/n; t1=(t-1/7).^2;t3=(t-3/7).^2;t4=(t-4/7).^2; t6=(t-6/7).^2; m=exp(-s*t1)+exp(-s*t3)+exp(-s*t4)+exp(-s*t6); % 产生调制信号,采用高斯脉冲信号
- c=cos(2*pi*100*t); % 产生载波信号,载波频率为100Hz
- 载波频率fc=100Hz
- x=m.*c; % 正弦波幅度调制(DSB)产生调制后的信号
- y=x.*c; % 解调信号,用载波进行解调
- wp=0.1*pi;ws=0.12*pi;Rp=1;As=15; % 设计巴特沃斯数字低通滤波器,设定通带截止频率为0.1π,阻带截止频率为0.12π,通带最大衰减为1dB,阻带最小衰减为15dB。
- [N,wn]=buttord(wp/pi,ws/pi,Rp,As); [b,a]=butter(N,wn); % 求出巴特沃斯数字低通滤波器的系数
- m1=filter(b,a,y); % 进行滤波处理
- m1=2*m1; % 由于进行了幅度调制,因此解调后的信号幅度只有原来的一半,需要将其乘以2
- M=fft(m,n); % 对调制信号进行FFT变换,求出频率特性
- [H,w]=freqz(b,a,n,'whole'); f=(-n/2:1:n/2-1); % 求出巴特沃斯数字低通滤波器的频率特性及其对应的频率序列。
这段代码主要是实现了一个基于巴特沃斯数字低通滤波器的DSB信号的解调与滤波处理,最终得到了滤波后的信号频谱。
阅读全文