用Python代码实现基于RNA序列数据集实验,数据集在model文件夹中: ALKBH5_Baltz2012.train.negatives.fa 是训练集负样本; ALKBH5_Baltz2012.train.positives.fa 是训练集正样本; ALKBH5_Baltz2012.val.negatives.fa 是验证集负样本; ALKBH5_Baltz2012.val.positives.fa 是验证集正样本。 用Pytorch框架搭建循环神经网络,输出最终分类正确率。
时间: 2024-03-16 17:42:10 浏览: 143
实验用数据集
好的,这是一个很有趣的问题,需要一些时间和代码实现。首先,我们需要导入 PyTorch 模块和其他必要的库:
```python
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import Dataset, DataLoader
import numpy as np
from sklearn.model_selection import train_test_split
```
然后,我们需要定义一个数据集类,用于加载并处理 RNA 序列数据集。这个类需要实现 __len__() 方法和 __getitem__() 方法。
```python
class RNADataSet(Dataset):
def __init__(self, file_path):
self.data = []
self.labels = []
self.vocab = {'A': 0, 'C': 1, 'G': 2, 'U': 3} # 将四个核苷酸映射到数字
with open(file_path, 'r') as f:
lines = f.readlines()
for i in range(0, len(lines), 2):
seq = lines[i+1].strip() # RNA序列
label = int(lines[i].strip()[1]) # 类别标签(正样本为1,负样本为0)
seq_list = [self.vocab[c] for c in seq] # 将RNA序列转换为数字列表
self.data.append(seq_list)
self.labels.append(label)
def __len__(self):
return len(self.data)
def __getitem__(self, idx):
return torch.tensor(self.data[idx]), torch.tensor(self.labels[idx])
```
然后,我们需要定义一个循环神经网络模型:
```python
class RNN(nn.Module):
def __init__(self, input_size, hidden_size, num_layers, output_size):
super(RNN, self).__init__()
self.hidden_size = hidden_size
self.num_layers = num_layers
self.rnn = nn.LSTM(input_size, hidden_size, num_layers, batch_first=True)
self.fc = nn.Linear(hidden_size, output_size)
def forward(self, x):
h0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
c0 = torch.zeros(self.num_layers, x.size(0), self.hidden_size).to(device)
out, _ = self.rnn(x, (h0, c0))
out = self.fc(out[:, -1, :])
return out
```
接下来,我们需要加载数据集,划分训练集和验证集:
```python
train_dataset = RNADataSet('./model/ALKBH5_Baltz2012.train.negatives.fa')
train_dataset += RNADataSet('./model/ALKBH5_Baltz2012.train.positives.fa')
val_dataset = RNADataSet('./model/ALKBH5_Baltz2012.val.negatives.fa')
val_dataset += RNADataSet('./model/ALKBH5_Baltz2012.val.positives.fa')
train_loader = DataLoader(train_dataset, batch_size=64, shuffle=True)
val_loader = DataLoader(val_dataset, batch_size=64, shuffle=False)
train_size = len(train_dataset)
val_size = len(val_dataset)
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
```
然后,我们需要定义损失函数和优化器:
```python
model = RNN(input_size=4, hidden_size=128, num_layers=2, output_size=2).to(device) # 输入维度为4,即四种核苷酸
criterion = nn.CrossEntropyLoss()
optimizer = optim.Adam(model.parameters(), lr=0.001)
```
最后,我们需要训练模型,并输出最终分类正确率:
```python
num_epochs = 10
for epoch in range(num_epochs):
train_loss = 0.0
train_correct = 0
for data, label in train_loader:
data = data.to(device)
label = label.to(device)
optimizer.zero_grad()
output = model(data.float())
loss = criterion(output, label)
train_loss += loss.item()
_, predicted = torch.max(output.data, 1)
train_correct += (predicted == label).sum().item()
loss.backward()
optimizer.step()
train_loss /= train_size
train_acc = train_correct / train_size
val_loss = 0.0
val_correct = 0
with torch.no_grad():
for data, label in val_loader:
data = data.to(device)
label = label.to(device)
output = model(data.float())
loss = criterion(output, label)
val_loss += loss.item()
_, predicted = torch.max(output.data, 1)
val_correct += (predicted == label).sum().item()
val_loss /= val_size
val_acc = val_correct / val_size
print('Epoch [{}/{}], Train Loss: {:.4f}, Train Acc: {:.4f}, Val Loss: {:.4f}, Val Acc: {:.4f}'
.format(epoch+1, num_epochs, train_loss, train_acc, val_loss, val_acc))
```
最终,我们可以得到模型在验证集上的分类正确率。
阅读全文