public class main { public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { Configuration conf = new Configuration(); conf.set("mapreduce.framework.name", "local"); Job job = Job.getInstance(conf); job.setJarByClass(main.class); job.setMapperClass(MyMapper.class); job.setReducerClass(MyReducer.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(Text.class); //设置Reduce节点的个数为:1个 空1:_________________________________ FileInputFormat.setInputPaths(job, new Path("D:/mr/input")); FileOutputFormat.setOutputPath(job, new Path("D:/mr/output")); boolean res = job.waitForCompletion(true); System.exit(res ? 0 : 1); }

时间: 2024-04-28 18:23:40 浏览: 130
这段代码是一个简单的 Hadoop MapReduce 任务的驱动程序。在这个程序中,首先创建了一个 Configuration 对象,用于存储 Hadoop 集群的配置信息。然后创建了一个 Job 对象,设置了 Mapper 和 Reducer 类,以及输入和输出数据的格式和路径。其中,setInputPaths() 方法指定了输入数据的路径,setOutputPath() 方法指定了输出数据的路径。最后,调用 job.waitForCompletion() 方法提交并运行这个 MapReduce 任务,并等待任务完成。完成后,程序将返回一个布尔值表示任务是否成功执行,最后通过 System.exit() 方法结束程序的运行。 需要注意的是,空1处应该填写以下代码:job.setNumReduceTasks(1); 这行代码指定 Reduce 节点的个数为 1,即只有一个 Reduce 任务。
相关问题

public class TCAPP { public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { // 1.获取job Configuration conf=new Configuration(); Job job=Job.getInstance(conf); // 2.指定job使用的类

job.setJarByClass(TCAPP.class); // 3.指定map和reduce使用的类 job.setMapperClass(TCMapper.class); job.setReducerClass(TCReducer.class); // 4.指定map输出的类型 job.setMapOutputKeyClass(Text.class); job.setMapOutputValueClass(IntWritable.class); // 5.指定reduce输出的类型 job.setOutputKeyClass(Text.class); job.setOutputValueClass(IntWritable.class); // 6.指定输入和输出路径 FileInputFormat.setInputPaths(job,new Path(args[0])); FileOutputFormat.setOutputPath(job,new Path(args[1])); // 7.提交job boolean result=job.waitForCompletion(true); System.exit(result?0:1); } 这是一个MapReduce程序的主函数,可以实现对文本数据进行词频统计。其中,指定了Map和Reduce类,指定了输入和输出路径,最后提交job并退出程序。

Java用mapreduce输出数据保存到本地先写main代码

### 回答1: 首先,您需要配置Hadoop环境并导入相关的Java包,然后可以使用MapReduce API来编写Java代码。 具体来说,您需要实现Mapper和Reducer接口,分别处理输入数据并输出中间结果。然后,您需要实现Job类来将Mapper和Reducer组装在一起,并设置作业的输入输出路径以及相关的参数。最后,您需要在main方法中调用Job的waitForCompletion方法来提交作业并等待它完成。 示例代码如下: ```java import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.IntWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; public class WordCount { public static class WordCountMapper extends Mapper<Object, Text, Text, IntWritable>{ private final static IntWritable one = new IntWritable(1); private Text word = new Text(); public void map(Object key, Text value, Context context ) throws IOException, InterruptedException { String[] words = value.toString().split(" "); for (String w : words) { word.set(w); context.write(word, one); } } } public static class WordCountReducer extends Reducer<Text,IntWritable,Text,IntWritable> { private IntWritable result = new IntWritable(); public void reduce(Text key, Iterable<IntWritable> values, Context context ) throws IOException, InterruptedException { int sum = 0; for (IntWritable val : values) { sum += val.get(); } result.set(sum); context.write(key, result); } } public static void main(String[] args) throws Exception { Configuration conf = new Configuration(); Job job = ### 回答2: Java中使用MapReduce输出数据并保存到本地需要编写主要的代码。下面是一个示例的主要代码,该代码使用MapReduce输出数据并将结果保存到本地。 ``` import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.Text; import org.apache.hadoop.io.NullWritable; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import java.io.IOException; public class MapReduceToSaveDataLocally { public static class MapClass extends Mapper<Object, Text, Text, NullWritable> { @Override protected void map(Object key, Text value, Context context) throws IOException, InterruptedException { // 处理输入的数据并输出到Reducer // 这里是一个示例,你可以根据自己的需求进行修改 context.write(value, NullWritable.get()); } } public static class ReduceClass extends Reducer<Text, NullWritable, Text, NullWritable> { @Override protected void reduce(Text key, Iterable<NullWritable> values, Context context) throws IOException, InterruptedException { // 处理Mapper输出的数据并保存到本地 // 这里是一个示例,你可以根据自己的需求进行修改 context.write(key, NullWritable.get()); } } public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { Configuration conf = new Configuration(); Job job = Job.getInstance(conf, "MapReduce to Save Data Locally"); job.setJarByClass(MapReduceToSaveDataLocally.class); job.setMapperClass(MapClass.class); job.setReducerClass(ReduceClass.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(NullWritable.class); // 设置输入和输出路径 FileInputFormat.setInputPaths(job, new Path(args[0])); FileOutputFormat.setOutputPath(job, new Path(args[1])); // 删除已存在的输出目录 FileSystem fs = FileSystem.get(conf); fs.delete(new Path(args[1]), true); // 提交MapReduce作业并等待完成 int returnValue = job.waitForCompletion(true) ? 0 : 1; System.exit(returnValue); } } ``` 以上是一个示例的Java代码,用于使用MapReduce将数据保存到本地。你可以根据自己的需求进行适当的修改,例如修改Mapper和Reducer类的逻辑以及设置实际的输入和输出路径。请注意,你需要正确配置Hadoop相关的环境并提供正确的输入和输出路径参数才能成功运行该代码。 ### 回答3: 在Java中使用MapReduce输出数据并保存到本地,首先需要编写Main代码。以下是一个简单的示例代码: ``` import org.apache.hadoop.conf.Configuration; import org.apache.hadoop.fs.FileSystem; import org.apache.hadoop.fs.Path; import org.apache.hadoop.io.LongWritable; import org.apache.hadoop.io.Text; import org.apache.hadoop.mapreduce.Job; import org.apache.hadoop.mapreduce.Mapper; import org.apache.hadoop.mapreduce.Reducer; import org.apache.hadoop.mapreduce.lib.input.FileInputFormat; import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat; import java.io.IOException; public class MapReduceMain { public static class Map extends Mapper<LongWritable, Text, Text, Text> { public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException { // Mapper的逻辑 // 将输入数据进行处理,并将结果写入Context中,作为Reducer的输入 } } public static class Reduce extends Reducer<Text, Text, Text, Text> { public void reduce(Text key, Iterable<Text> values, Context context) throws IOException, InterruptedException { // Reducer的逻辑 // 对Mapper的输出进行聚合处理,并将最终结果写入Context中,作为输出 } } public static void main(String[] args) throws IOException, ClassNotFoundException, InterruptedException { Configuration conf = new Configuration(); Job job = Job.getInstance(conf, "MapReduce Example"); job.setJarByClass(MapReduceMain.class); job.setMapperClass(Map.class); job.setReducerClass(Reduce.class); job.setOutputKeyClass(Text.class); job.setOutputValueClass(Text.class); FileInputFormat.addInputPath(job, new Path("input_path")); // 设置输入路径 FileOutputFormat.setOutputPath(job, new Path("output_path")); // 设置输出路径 FileSystem fs = FileSystem.get(conf); if (fs.exists(new Path("output_path"))) { fs.delete(new Path("output_path"), true); // 如果输出路径已存在,则删除之前的结果 } System.exit(job.waitForCompletion(true) ? 0 : 1); } } ``` 在上述示例代码中,首先定义了两个内部类`Map`和`Reduce`,分别继承自`Mapper`和`Reducer`。在`Map`类的`map`方法中,可以编写自定义的Mapper逻辑,将输入数据进行处理并将结果写入Context中。在`Reduce`类的`reduce`方法中,可以编写自定义的Reducer逻辑,对Mapper的输出进行聚合处理,并将最终结果写入Context中。 在`main`方法中,首先创建一个`Configuration`对象,并通过`Job`类创建一个MapReduce任务对象。设置任务的各项属性,包括输入路径、输出路径、Mapper和Reducer的类、输出键值对的类型等。在设置完属性后,通过`FileSystem`对象检查输出路径是否已经存在,如果存在则删除之前的结果。最后调用`job.waitForCompletion(true)`方法提交任务,并通过`System.exit`方法等待任务完成。 请注意,上述示例代码中未包含Mapper和Reducer的具体实现逻辑,需要根据实际需求进行编写。同时,输入路径和输出路径需要根据具体的文件系统设置正确的路径。
阅读全文

相关推荐

最新推荐

recommend-type

实例分析Java中public static void main(String args[])是什么意思

Java中的`public static void main(String[] args)`是每个可独立执行的Java程序的入口点,它的每一个部分都有特定的含义: 1. `public`:这是一个访问修饰符,表示该方法可以被任何其他类访问,无论它们是否在同一...
recommend-type

浅析C#中的Main(String[] args)参数输入问题

`Main` 方法通常接受一个字符串数组 `args` 作为参数,即 `Main(String[] args)`。这个参数用于接收从命令行传递给程序的参数,这对于运行时配置或者自动化脚本非常有用。 在上面的代码示例中,我们看到一个简单的 ...
recommend-type

储能双向变流器,可实现整流器与逆变器控制,可实现整流与逆变,采用母线电压PI外环与电流内环PI控制,可整流也可逆变实现并网,实现能量双向流动,采用SVPWM调制方式 1.双向 2.SVPWM 3.双

储能双向变流器,可实现整流器与逆变器控制,可实现整流与逆变,采用母线电压PI外环与电流内环PI控制,可整流也可逆变实现并网,实现能量双向流动,采用SVPWM调制方式。 1.双向 2.SVPWM 3.双闭环 支持simulink2022以下版本,联系跟我说什么版本,我给转成你需要的版本(默认发2016b)。
recommend-type

S7-PDIAG工具使用教程及技术资料下载指南

资源摘要信息:"s7upaadk_S7-PDIAG帮助" s7upaadk_S7-PDIAG帮助是针对西门子S7系列PLC(可编程逻辑控制器)进行诊断和维护的专业工具。S7-PDIAG是西门子提供的诊断软件包,能够帮助工程师和技术人员有效地检测和解决S7 PLC系统中出现的问题。它提供了一系列的诊断功能,包括但不限于错误诊断、性能分析、系统状态监控以及远程访问等。 S7-PDIAG软件广泛应用于自动化领域中,尤其在工业控制系统中扮演着重要角色。它支持多种型号的S7系列PLC,如S7-1200、S7-1500等,并且与TIA Portal(Totally Integrated Automation Portal)等自动化集成开发环境协同工作,提高了工程师的开发效率和系统维护的便捷性。 该压缩包文件包含两个关键文件,一个是“快速接线模块.pdf”,该文件可能提供了关于如何快速连接S7-PDIAG诊断工具的指导,例如如何正确配置硬件接线以及进行快速诊断测试的步骤。另一个文件是“s7upaadk_S7-PDIAG帮助.chm”,这是一个已编译的HTML帮助文件,它包含了详细的操作说明、故障排除指南、软件更新信息以及技术支持资源等。 了解S7-PDIAG及其相关工具的使用,对于任何负责西门子自动化系统维护的专业人士都是至关重要的。使用这款工具,工程师可以迅速定位问题所在,从而减少系统停机时间,确保生产的连续性和效率。 在实际操作中,S7-PDIAG工具能够与西门子的S7系列PLC进行通讯,通过读取和分析设备的诊断缓冲区信息,提供实时的系统性能参数。用户可以通过它监控PLC的运行状态,分析程序的执行流程,甚至远程访问PLC进行维护和升级。 另外,该帮助文件可能还提供了与其他产品的技术资料下载链接,这意味着用户可以通过S7-PDIAG获得一系列扩展支持。例如,用户可能需要下载与S7-PDIAG配套的软件更新或补丁,或者是需要更多高级功能的第三方工具。这些资源的下载能够进一步提升工程师解决复杂问题的能力。 在实践中,熟练掌握S7-PDIAG的使用技巧是提升西门子PLC系统维护效率的关键。这要求工程师不仅要有扎实的理论基础,还需要通过实践不断积累经验。此外,了解与S7-PDIAG相关的软件和硬件产品的技术文档,对确保自动化系统的稳定运行同样不可或缺。通过这些技术资料的学习,工程师能够更加深入地理解S7-PDIAG的高级功能,以及如何将这些功能应用到实际工作中去,从而提高整个生产线的自动化水平和生产效率。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

CC-LINK远程IO模块AJ65SBTB1现场应用指南:常见问题快速解决

# 摘要 CC-LINK远程IO模块作为一种工业通信技术,为自动化和控制系统提供了高效的数据交换和设备管理能力。本文首先概述了CC-LINK远程IO模块的基础知识,接着详细介绍了其安装与配置流程,包括硬件的物理连接和系统集成要求,以及软件的参数设置与优化。为应对潜在的故障问题,本文还提供了故障诊断与排除的方法,并探讨了故障解决的实践案例。在高级应用方面,文中讲述了如何进行编程与控制,以及如何实现系统扩展与集成。最后,本文强调了CC-LINK远程IO模块的维护与管理的重要性,并对未来技术发展趋势进行了展望。 # 关键字 CC-LINK远程IO模块;系统集成;故障诊断;性能优化;编程与控制;维护
recommend-type

python 画一个进度条

在Python中,你可以使用`tkinter`库来创建一个简单的进度条。以下是一个基本的例子,展示了如何使用`ttk`模块中的`Progressbar`来绘制进度条: ```python import tkinter as tk from tkinter import ttk # 创建主窗口 root = tk.Tk() # 设置进度条范围 max_value = 100 # 初始化进度条 progress_bar = ttk.Progressbar(root, orient='horizontal', length=200, mode='determinate', maximum=m
recommend-type

Nginx 1.19.0版本Windows服务器部署指南

资源摘要信息:"nginx-1.19.0-windows.zip" 1. Nginx概念及应用领域 Nginx(发音为“engine-x”)是一个高性能的HTTP和反向代理服务器,同时也是一款IMAP/POP3/SMTP服务器。它以开源的形式发布,在BSD许可证下运行,这使得它可以在遵守BSD协议的前提下自由地使用、修改和分发。Nginx特别适合于作为静态内容的服务器,也可以作为反向代理服务器用来负载均衡、HTTP缓存、Web和反向代理等多种功能。 2. Nginx的主要特点 Nginx的一个显著特点是它的轻量级设计,这意味着它占用的系统资源非常少,包括CPU和内存。这使得Nginx成为在物理资源有限的环境下(如虚拟主机和云服务)的理想选择。Nginx支持高并发,其内部采用的是多进程模型,以及高效的事件驱动架构,能够处理大量的并发连接,这一点在需要支持大量用户访问的网站中尤其重要。正因为这些特点,Nginx在中国大陆的许多大型网站中得到了应用,包括百度、京东、新浪、网易、腾讯、淘宝等,这些网站的高访问量正好需要Nginx来提供高效的处理。 3. Nginx的技术优势 Nginx的另一个技术优势是其配置的灵活性和简单性。Nginx的配置文件通常很小,结构清晰,易于理解,使得即使是初学者也能较快上手。它支持模块化的设计,可以根据需要加载不同的功能模块,提供了很高的可扩展性。此外,Nginx的稳定性和可靠性也得到了业界的认可,它可以在长时间运行中维持高效率和稳定性。 4. Nginx的版本信息 本次提供的资源是Nginx的1.19.0版本,该版本属于较新的稳定版。在版本迭代中,Nginx持续改进性能和功能,修复发现的问题,并添加新的特性。开发团队会根据实际的使用情况和用户反馈,定期更新和发布新版本,以保持Nginx在服务器软件领域的竞争力。 5. Nginx在Windows平台的应用 Nginx的Windows版本支持在Windows操作系统上运行。虽然Nginx最初是为类Unix系统设计的,但随着版本的更新,对Windows平台的支持也越来越完善。Windows版本的Nginx可以为Windows用户提供同样的高性能、高并发以及稳定性,使其可以构建跨平台的Web解决方案。同时,这也意味着开发者可以在开发环境中使用熟悉的Windows系统来测试和开发Nginx。 6. 压缩包文件名称解析 压缩包文件名称为"nginx-1.19.0-windows.zip",这表明了压缩包的内容是Nginx的Windows版本,且版本号为1.19.0。该文件包含了运行Nginx服务器所需的所有文件和配置,用户解压后即可进行安装和配置。文件名称简洁明了,有助于用户识别和确认版本信息,方便根据需要下载和使用。 7. Nginx在中国大陆的应用实例 Nginx在中国大陆的广泛使用,证明了其在实际部署中的卓越表现。这包括但不限于百度、京东、新浪、网易、腾讯、淘宝等大型互联网公司。这些网站的高访问量要求服务器能够处理数以百万计的并发请求,而Nginx正是凭借其出色的性能和稳定性满足了这一需求。这些大型网站的使用案例为Nginx带来了良好的口碑,同时也证明了Nginx作为一款服务器软件的领先地位。 总结以上信息,Nginx-1.19.0-windows.zip是一个适用于Windows操作系统的Nginx服务器软件压缩包,提供了高性能的Web服务和反向代理功能,并被广泛应用于中国大陆的大型互联网企业中。用户在使用该压缩包时,可以期待一个稳定、高效且易于配置的服务器环境。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

CC-LINK远程IO模块在环境监控中的应用:技术与案例探讨

![CC-LINK](https://www.mitsubishielectric.com/fa/products/cnt/plcnet/pmerit/cclink_ie/concept/img/main_img.jpg) # 摘要 CC-LINK远程IO模块作为一种先进的工业通信技术,在环境监控系统中具有广泛应用。本文首先概述了CC-LINK远程IO模块的基本概念及其在环境监控系统中的基础理论,包括硬件组成、软件架构及技术优势。随后,详细介绍了其在实时监控与远程控制、系统集成与配置、安全维护方面的具体实践应用。案例分析部分深入探讨了CC-LINK模块在不同环境监控场景中的应用效果与技术解决