因子图算法matlab代码
时间: 2023-06-05 17:01:38 浏览: 691
因子图算法是用来解决最小权值完美匹配问题的一种算法。在实际应用中,它被广泛应用于图像、机器学习等领域。以下是一个matlab代码示例。
function [matches, matchingCost] = factorGraphMatching(costMatrix)
% 处理图的大小
numRows = size(costMatrix, 1);
numCols = size(costMatrix, 2);
numVars = numRows*numCols;
% 创建图X和Y变量节点
for i = 1:numVars
X(i) = Variable();
Y(i) = Variable();
end
% 创建因子节点并为每个因子节点添加变量
for i = 1:numRows
for j = 1:numCols
theta = Factor(costMatrix(i,j));
fRow{i,j} = FactorNode(theta, [X((i-1)*numCols + j), Y((i-1)*numCols + j)]);
end
end
% 创建扫描线因子节点并为每个因子节点添加变量
for i = 1:numRows
for j = 1:numCols-1
g = Factor(0);
fCol{i,j} = FactorNode(g, [X((i-1)*numCols + j), X((i-1)*numCols + j + 1)]);
end
end
% 添加扫描线因子节点到列方向上的因子节点
for i = 1:numRows
for j = 1:numCols-2
AddFactor(fRow{i,j}, [fCol{i,j}, fCol{i,j+1}]);
end
end
% 添加扫描线因子节点到行方向上的因子节点
for i = 1:numRows-1
for j = 1:numCols-1
AddFactor(fCol{i,j}, [fRow{i,j}, fRow{i+1,j}]);
end
end
% 执行因子图推理
engine = JunctionTreeEngine(JTreeFactory);
[P, logZ] = engine.jointBeliefPropagate({X, Y});
% 解码匹配结果
matches = zeros(numRows, numCols);
for i=1:numRows
for j=1:numCols
if P(X((i-1)*numCols + j)).val == 1
matches(i,j) = 1;
else
matches(i,j) = 2;
end
end
end
% 计算匹配成本
matchingCost = logZ;
end
在以上代码中,FactorGraphMatching函数接收一个代价矩阵作为输入,然后它会使用因子图算法执行匹配操作。在函数的开始部分,它会计算图的大小并为每个变量节点创建一个变量。然后,函数会创建矩形图的因子节点,并为每个因子节点给定变量,它会创建扫描线因子节点,并将这些因子节点添加到列方向和行方向的因子节点中。接下来,函数会执行因子图推理并解码匹配结果,最后计算匹配成本。
因子图算法是一种非常有用的算法,它可用于多个领域,包括统计学、机器学习和视觉处理。该算法的实现取决于具体应用场景和问题,有许多变体可以采用,但以上matlab代码示例应该可以在很大程度上揭示因子图算法在匹配问题中的应用。
阅读全文
相关推荐















