PyTorch框架实现Faster RCNN模型
时间: 2024-01-27 09:03:54 浏览: 172
Faster RCNN是一个流行的目标检测模型,其结构包括两个部分:Region Proposal Network(RPN)和Fast R-CNN。PyTorch框架提供了实现Faster RCNN模型的工具包torchvision.models.detection。
以下是实现Faster RCNN模型的步骤:
1. 导入所需的库和模块:
```
import torch
import torchvision
from torchvision.models.detection import FasterRCNN
from torchvision.models.detection.rpn import AnchorGenerator
```
2. 定义一个自定义的数据集类来加载训练和测试数据。
```
class MyDataset(torch.utils.data.Dataset):
def __init__(self, images, targets):
self.images = images
self.targets = targets
def __getitem__(self, index):
image = self.images[index]
target = self.targets[index]
return image, target
def __len__(self):
return len(self.images)
```
3. 加载数据集和对应的标签,并将它们转换为模型所需的格式。
```
train_dataset = MyDataset(train_images, train_labels)
test_dataset = MyDataset(test_images, test_labels)
def collate_fn(batch):
return tuple(zip(*batch))
train_data_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=2, shuffle=True, num_workers=4,
collate_fn=collate_fn)
test_data_loader = torch.utils.data.DataLoader(
test_dataset, batch_size=1, shuffle=False, num_workers=4,
collate_fn=collate_fn)
```
4. 定义Faster RCNN模型。
```
backbone = torchvision.models.mobilenet_v2(pretrained=True).features
backbone.out_channels = 1280
anchor_generator = AnchorGenerator(sizes=((32, 64, 128, 256, 512),),
aspect_ratios=((0.5, 1.0, 2.0),))
roi_pooler = torchvision.ops.MultiScaleRoIAlign(
featmap_names=['0'], output_size=7, sampling_ratio=2)
model = FasterRCNN(
backbone, num_classes=2,
rpn_anchor_generator=anchor_generator,
box_roi_pool=roi_pooler)
```
5. 定义损失函数和优化器。
```
params = [p for p in model.parameters() if p.requires_grad]
optimizer = torch.optim.SGD(params, lr=0.005, momentum=0.9, weight_decay=0.0005)
lr_scheduler = torch.optim.lr_scheduler.StepLR(optimizer, step_size=3, gamma=0.1)
def collate_fn(batch):
return tuple(zip(*batch))
train_data_loader = torch.utils.data.DataLoader(
train_dataset, batch_size=2, shuffle=True, num_workers=4,
collate_fn=collate_fn)
test_data_loader = torch.utils.data.DataLoader(
test_dataset, batch_size=1, shuffle=False, num_workers=4,
collate_fn=collate_fn)
```
6. 训练模型。
```
num_epochs = 10
for epoch in range(num_epochs):
model.train()
i = 0
for images, targets in train_data_loader:
images = list(image for image in images)
targets = [{k: v for k, v in t.items()} for t in targets]
loss_dict = model(images, targets)
losses = sum(loss for loss in loss_dict.values())
optimizer.zero_grad()
losses.backward()
optimizer.step()
if i % 50 == 0:
print(f"Epoch {epoch+1}, iteration {i}: {losses}")
i += 1
lr_scheduler.step()
model.eval()
i = 0
for images, targets in test_data_loader:
images = list(image for image in images)
targets = [{k: v for k, v in t.items()} for t in targets]
with torch.no_grad():
loss_dict = model(images, targets)
if i % 50 == 0:
print(f"Epoch {epoch+1}, iteration {i}: {loss_dict}")
i += 1
```
7. 测试模型。
```
model.eval()
for images, targets in test_data_loader:
images = list(image for image in images)
targets = [{k: v for k, v in t.items()} for t in targets]
with torch.no_grad():
output = model(images)
print(output)
```
阅读全文