请用python代码写一个yolov5的数据集标注工具给我
时间: 2023-02-06 09:41:17 浏览: 215
人工智能-项目实践-目标检测-目标检测yolov5 v6.0版,pytorch实现,标注,增强,训练自定义数据集全流程
首先,你需要准备好你的数据集图片和标签,标签通常是一个包含每个目标框的类别、位置和大小信息的文本文件。接下来,你可以使用如下 Python 代码来创建一个 YOLOv5 数据集标注工具:
```python
import cv2
import numpy as np
class YOLOv5AnnotationTool:
def __init__(self, image_folder, labels):
self.image_folder = image_folder
self.labels = labels
self.current_image_index = 0
self.current_image_path = self.image_folder[self.current_image_index]
self.current_image = cv2.imread(self.current_image_path)
self.current_annotations = []
self.window_name = "YOLOv5 Annotation Tool"
cv2.namedWindow(self.window_name)
cv2.setMouseCallback(self.window_name, self.draw_bounding_box)
def draw_bounding_box(self, event, x, y, flags, param):
if event == cv2.EVENT_LBUTTONDOWN:
# Start drawing the bounding box
self.start_point = (x, y)
elif event == cv2.EVENT_LBUTTONUP:
# End drawing the bounding box
end_point = (x, y)
label = self.select_label()
self.current_annotations.append((self.start_point, end_point, label))
self.start_point = None
def select_label(self):
# Show a list of labels and let the user select one
print("Select a label:")
for i, label in enumerate(self.labels):
print(f"{i}: {label}")
selected_label = input()
return self.labels[int(selected_label)]
def run(self):
while True:
# Show the current image and draw the bounding boxes
image_with_boxes = self.current_image.copy()
for start_point, end_point, label in self.current_annotations:
cv2.rectangle(image_with_boxes, start_point, end_point, (0, 255, 0), 2)
cv2.imshow(self.window_name, image_with_boxes)
# Wait for the user to press a key
key = cv2.waitKey(1)
# Save the current annotations and move to the next image if the user pressed "n"
if key == ord("n"):
self.save_current_annotations()
self.move_
阅读全文