(2) 编写一个程序,计算某个目录里所有文件的大小。

时间: 2024-05-14 19:11:48 浏览: 14
好的,这是一个计算文件大小的技术问题,我可以为您提供帮助。您可以使用Python编写一个脚本来实现。代码示例如下: ``` import os def get_directory_size(directory): total = 0 with os.scandir(directory) as it: for entry in it: if entry.is_file(): total += entry.stat().st_size elif entry.is_dir(): total += get_directory_size(entry.path) return total directory = '/path/to/directory' total_size = get_directory_size(directory) print('Total size:', total_size) ``` 请注意,您需要将`directory`变量设置为要计算大小的目录的路径。此代码将递归地遍历目录树,并将所有文件的大小相加。 希望这可以帮到您。
相关问题

编写一个程序,计算某个目录里所有文件的大小。

好的,这个问题可以直接回答。我们可以使用Python语言中的os和os.path库来实现。具体的程序可以参考下面的代码: ```python import os def get_dir_size(path='.'): """ 获取目录大小 :param path: 目录路径 :return: 目录大小,单位为字节 """ total = 0 with os.scandir(path) as it: for entry in it: if entry.is_file(): total += entry.stat().st_size elif entry.is_dir(): total += get_dir_size(entry.path) return total path = "/path/to/dir" size = get_dir_size(path) print("目录 %s 的大小为 %d 字节" % (path, size)) ``` 这个程序可以递归地计算指定目录下的所有文件大小,并返回总大小。

用android studio写一个棋钟

### 回答1: 好的,下面是一个简单的棋钟实现。棋钟是一种计时器,用于计算棋局的时间。在实现中,我们将使用Android框架提供的`Chronometer`控件来显示计时器的时间,并使用`Handler`和`Runnable`来更新计时器的时间。 首先,在布局文件中添加一个`Chronometer`控件: ```xml <Chronometer android:id="@+id/chronometer" android:layout_width="wrap_content" android:layout_height="wrap_content" android:textSize="24sp" android:textStyle="bold" android:layout_gravity="center" android:layout_marginTop="16dp" android:layout_marginBottom="16dp" /> ``` 然后,在Activity中获取这个控件,并启动计时器: ```java public class MainActivity extends AppCompatActivity { private Chronometer mChronometer; @Override protected void onCreate(Bundle savedInstanceState) { super.onCreate(savedInstanceState); setContentView(R.layout.activity_main); mChronometer = findViewById(R.id.chronometer); mChronometer.setBase(SystemClock.elapsedRealtime()); mChronometer.start(); } } ``` 在这个实现中,我们使用`SystemClock.elapsedRealtime()`方法来获取系统启动以来的时间,并将其作为计时器的基准时间。然后,我们调用`start()`方法来启动计时器。 接下来,我们需要使用`Handler`和`Runnable`来更新计时器的时间。在Activity中添加以下代码: ```java private Handler mHandler = new Handler(); private boolean mIsRunning = false; private long mElapsedTime = 0; private Runnable mRunnable = new Runnable() { @Override public void run() { long elapsedMillis = SystemClock.elapsedRealtime() - mChronometer.getBase(); mElapsedTime += elapsedMillis; mChronometer.setText(formatTime(mElapsedTime)); mHandler.postDelayed(this, 1000); } }; @Override protected void onResume() { super.onResume(); if (mIsRunning) { mHandler.postDelayed(mRunnable, 1000); } } @Override protected void onPause() { super.onPause(); if (mIsRunning) { mHandler.removeCallbacks(mRunnable); } } // 格式化时间 private String formatTime(long millis) { long minutes = TimeUnit.MILLISECONDS.toMinutes(millis); long seconds = TimeUnit.MILLISECONDS.toSeconds(millis) - TimeUnit.MINUTES.toSeconds(minutes); return String.format(Locale.getDefault(), "%02d:%02d", minutes, seconds); } ``` 在这个实现中,我们使用`mHandler`对象来定期更新计时器的时间。`mIsRunning`标志表示计时器是否正在运行,而`mElapsedTime`表示已经经过的时间。`mRunnable`对象是一个`Runnable`,它会在每次更新计时器时被调用。 在`onResume()`方法中,我们检查计时器是否正在运行,如果是,则使用`postDelayed()`方法来延迟1秒钟执行`mRunnable`。在`onPause()`方法中,我们检查计时器是否正在运行,如果是,则使用`removeCallbacks()`方法停止计时器。 最后,我们还需要实现一些控制计时器的方法,例如`start()`、`pause()`和`reset()`等。以下是一个可能的实现: ```java // 启动计时器 private void start() { if (!mIsRunning) { mChronometer.setBase(SystemClock.elapsedRealtime() - mElapsedTime); mChronometer.start(); mIsRunning = true; mHandler.postDelayed(mRunnable, 1000); } } // 暂停计时器 private void pause() { if (mIsRunning) { mChronometer.stop(); mIsRunning = false; mHandler.removeCallbacks(mRunnable); } } // 重置计时器 private void reset() { mElapsedTime = 0; mChronometer.setBase(SystemClock.elapsedRealtime()); mChronometer.setText(formatTime(mElapsedTime)); } ``` 现在,你已经实现了一个简单的棋钟。你可以根据自己的需要添加更多功能,例如暂停、重置、保存时间等。 ### 回答2: 使用Android Studio编写一个棋钟可以通过以下步骤实现: 1. 首先,在Android Studio中创建一个新的Android项目。 2. 在项目的布局文件中设计棋钟的外观。可以使用LinearLayout或者RelativeLayout来布局各个元素,例如棋盘、棋子和计时器。 3. 在Java文件中编写游戏的逻辑。根据棋钟的规则,例如计算每个玩家的步数、计时器的显示和计算每个玩家的时间等等。 4. 创建计时器功能。可以使用Android的计时器类(CountDownTimer)来实现,设置每个玩家的时间限制。 5. 添加用户交互功能。通过监测用户的点击操作,实现棋盘上棋子的移动和玩家的轮流。 6. 实现游戏结束条件。当某个玩家达到指定的条件,例如时间用尽或者棋盘上没有空位时,游戏结束。显示获胜方并停止计时器的功能。 7. 最后,运行应用程序,进行测试和调试。 需要注意的是,这只是一个简化的步骤,具体实现时还需要根据具体的要求和功能进行调整。另外,更加复杂的游戏规则和功能也可以根据需求进行扩展。 ### 回答3: 要使用Android Studio编写一个棋钟,首先需要创建一个新的Android项目。在项目的res/layout文件夹中,创建一个名为activity_main.xml的布局文件,用于显示棋钟的界面。 在该布局文件中,可以使用TextView来显示棋钟的时间。可以设置该TextView的字体、颜色、大小等属性,以满足设计要求。 然后,在Java文件中,创建一个名为MainActivity的类,作为主活动。在该类中,可以使用系统提供的时间库来获取当前的时间,并根据时间来更新TextView的显示内容。 在该类中,可以使用Handler类来定时更新时间。可以使用postDelayed方法来实现定时功能,该方法可以在指定的延迟时间后执行指定的操作。因此,可以在延迟一秒后,更新TextView的显示内容并再次调用postDelayed方法,以实现每秒钟更新一次时间的效果。 最后,使用Android Studio的编译和运行功能,将该项目编译成一个APK安装包,并安装到Android设备上进行测试。可以通过点击运行按钮,选择已连接的设备或模拟器,以启动应用程序。 当应用程序启动后,即可看到棋钟的界面,并实时显示当前的时间。随着时间的变化,棋钟的时间也会相应更新。通过Android Studio的日志输出功能,可以查看代码的运行情况,以及检查可能出现的错误和异常。 总之,使用Android Studio编写一个棋钟需要先创建一个新的Android项目,并在布局文件中设置显示棋钟时间的TextView。然后,在Java文件中实现时间更新的逻辑,使用Handler类的postDelayed方法来实现定时更新。最后,通过编译和运行功能,将项目编译成APK并安装到设备上进行测试。

相关推荐

最新推荐

recommend-type

2—1 VB6.0的集成开发环境

在学习可视化编程语言时,通常都是从编写最简单的程序开始的,它让初学者可以体验一下到底是如何使用强大的集成开发环境编写程序的。 由“开始”,移到“Microsoft Visual Basic 6.0中文版”,再移到“Microsoft ...
recommend-type

各种隐藏 WebShell、创建、删除畸形目录、特殊文件名、黑帽SEO作弊

弄一个非木马脚本(不会被杀),只有简单的文件读写功能,然后在一个 24 小时运行的服务器上,使用程序每隔一秒请求数次该脚本,该脚本每次执行时会检查目标文件(某个挂马或者黑帽 SEO 的文件)的大小以及属性是否...
recommend-type

地县级城市建设2022-2002 -市级预算资金-国有土地使用权出让收入 省份 城市.xlsx

数据含省份、行政区划级别(细分省级、地级市、县级市)两个变量,便于多个角度的筛选与应用 数据年度:2002-2022 数据范围:全693个地级市、县级市、直辖市城市,含各省级的汇总tongji数据 数据文件包原始数据(由于多年度指标不同存在缺失值)、线性插值、回归填补三个版本,提供您参考使用。 其中,回归填补无缺失值。 填补说明: 线性插值。利用数据的线性趋势,对各年份中间的缺失部分进行填充,得到线性插值版数据,这也是学者最常用的插值方式。 回归填补。基于ARIMA模型,利用同一地区的时间序列数据,对缺失值进行预测填补。 包含的主要城市: 通州 石家庄 藁城 鹿泉 辛集 晋州 新乐 唐山 开平 遵化 迁安 秦皇岛 邯郸 武安 邢台 南宫 沙河 保定 涿州 定州 安国 高碑店 张家口 承德 沧州 泊头 任丘 黄骅 河间 廊坊 霸州 三河 衡水 冀州 深州 太原 古交 大同 阳泉 长治 潞城 晋城 高平 朔州 晋中 介休 运城 永济 .... 等693个地级市、县级市,含省级汇总 主要指标:
recommend-type

银行家算法:守护系统安全稳定的关键技术.pdf

在多道程序环境中,进程间的资源争夺可能导致死锁现象的发生,从而影响系统的正常运行。银行家算法是一种基于资源分配和请求的算法,用于避免死锁的发生。通过模拟银行家的贷款操作,该算法确保系统在任何时候都不会进入不安全状态,从而避免死lock的发生。 二、银行家算法的基本概念 系统状态:系统状态包括当前可用的资源数量、每个进程所拥有的资源数量以及每个进程所申请的资源数量。 安全状态:如果存在一个进程序列,使得按照该序列执行每个进程的资源请求都不会导致死锁,那么系统处于安全状态。 不安全状态:如果不存在这样的进程序列,那么系统处于不安全状态,死锁可能会发生。
recommend-type

一款易语言写的XP模拟器

一款易语言写的XP模拟器
recommend-type

基于嵌入式ARMLinux的播放器的设计与实现 word格式.doc

本文主要探讨了基于嵌入式ARM-Linux的播放器的设计与实现。在当前PC时代,随着嵌入式技术的快速发展,对高效、便携的多媒体设备的需求日益增长。作者首先深入剖析了ARM体系结构,特别是针对ARM9微处理器的特性,探讨了如何构建适用于嵌入式系统的嵌入式Linux操作系统。这个过程包括设置交叉编译环境,优化引导装载程序,成功移植了嵌入式Linux内核,并创建了适合S3C2410开发板的根文件系统。 在考虑到嵌入式系统硬件资源有限的特点,通常的PC机图形用户界面(GUI)无法直接应用。因此,作者选择了轻量级的Minigui作为研究对象,对其实体架构进行了研究,并将其移植到S3C2410开发板上,实现了嵌入式图形用户界面,使得系统具有简洁而易用的操作界面,提升了用户体验。 文章的核心部分是将通用媒体播放器Mplayer移植到S3C2410开发板上。针对嵌入式环境中的音频输出问题,作者针对性地解决了Mplayer播放音频时可能出现的不稳定性,实现了音乐和视频的无缝播放,打造了一个完整的嵌入式多媒体播放解决方案。 论文最后部分对整个项目进行了总结,强调了在嵌入式ARM-Linux平台上设计播放器所取得的成果,同时也指出了一些待改进和完善的方面,如系统性能优化、兼容性提升以及可能的扩展功能等。关键词包括嵌入式ARM-Linux、S3C2410芯片、Mplayer多媒体播放器、图形用户界面(GUI)以及Minigui等,这些都反映出本文研究的重点和领域。 通过这篇论文,读者不仅能了解到嵌入式系统与Linux平台结合的具体实践,还能学到如何在资源受限的环境中设计和优化多媒体播放器,为嵌入式技术在多媒体应用领域的进一步发展提供了有价值的经验和参考。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Python字符串为空判断的动手实践:通过示例掌握技巧

![Python字符串为空判断的动手实践:通过示例掌握技巧](https://img-blog.csdnimg.cn/72f88d4fc1164d6c8b9c29d8ab5ed75c.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBASGFyYm9yIExhdQ==,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. Python字符串为空判断的基础理论 字符串为空判断是Python编程中一项基本且重要的任务。它涉及检查字符串是否为空(不包含任何字符),这在
recommend-type

box-sizing: border-box;作用是?

`box-sizing: border-box;` 是 CSS 中的一个样式属性,它改变了元素的盒模型行为。默认情况下,浏览器会计算元素内容区域(content)、内边距(padding)和边框(border)的总尺寸,也就是所谓的"标准盒模型"。而当设置为 `box-sizing: border-box;` 后,元素的总宽度和高度会包括内容、内边距和边框的总空间,这样就使得开发者更容易控制元素的实际布局大小。 具体来说,这意味着: 1. 内容区域的宽度和高度不会因为添加内边距或边框而自动扩展。 2. 边框和内边距会从元素的总尺寸中减去,而不是从内容区域开始计算。
recommend-type

经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf

本文主要探讨的是"经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf",该研究专注于嵌入式指纹识别技术在实际应用中的设计和实现。嵌入式指纹识别系统因其独特的优势——无需外部设备支持,便能独立完成指纹识别任务,正逐渐成为现代安全领域的重要组成部分。 在技术背景部分,文章指出指纹的独特性(图案、断点和交叉点的独一无二性)使其在生物特征认证中具有很高的可靠性。指纹识别技术发展迅速,不仅应用于小型设备如手机或门禁系统,也扩展到大型数据库系统,如连接个人电脑的桌面应用。然而,桌面应用受限于必须连接到计算机的条件,嵌入式系统的出现则提供了更为灵活和便捷的解决方案。 为了实现嵌入式指纹识别,研究者首先构建了一个专门的开发平台。硬件方面,详细讨论了电源电路、复位电路以及JTAG调试接口电路的设计和实现,这些都是确保系统稳定运行的基础。在软件层面,重点研究了如何在ARM芯片上移植嵌入式操作系统uC/OS-II,这是一种实时操作系统,能够有效地处理指纹识别系统的实时任务。此外,还涉及到了嵌入式TCP/IP协议栈的开发,这是实现系统间通信的关键,使得系统能够将采集的指纹数据传输到远程服务器进行比对。 关键词包括:指纹识别、嵌入式系统、实时操作系统uC/OS-II、TCP/IP协议栈。这些关键词表明了论文的核心内容和研究焦点,即围绕着如何在嵌入式环境中高效、准确地实现指纹识别功能,以及与外部网络的无缝连接。 这篇论文不仅深入解析了嵌入式指纹识别系统的硬件架构和软件策略,而且还展示了如何通过结合嵌入式技术和先进操作系统来提升系统的性能和安全性,为未来嵌入式指纹识别技术的实际应用提供了有价值的研究成果。