folium 使用高德地图
时间: 2023-09-20 07:13:25 浏览: 315
Folium 可以通过使用高德地图 API 来显示地图。
以下是使用 folium 和高德地图 API 显示地图的示例:
```python
import folium
# 创建地图
m = folium.Map(location=[31.23, 121.47], zoom_start=13, tiles=None)
# 添加高德地图图层
tiles = 'http://webst01.is.autonavi.com/appmaptile?style=6&x={x}&y={y}&z={z}'
folium.TileLayer(tiles=tiles, attr='高德地图', name='高德地图', overlay=True).add_to(m)
# 添加标记
folium.Marker(location=[31.23, 121.47], popup='上海市').add_to(m)
# 显示地图
m
```
在上面的示例中,创建了一个地图,并使用高德地图 API 添加了一个图层。还添加了一个标记,最后显示了地图。
相关问题
streamlit_folium 高德地图
Streamlit是一个用于构建数据应用程序的Python库,而Folium是一个用于在Python中创建互动地图的库。Folium支持多种地图提供商,包括Google Maps,OpenStreetMap和Mapbox。但是,Folium不支持高德地图,因此需要使用其他库来实现在Streamlit中使用高德地图。
一个可能的解决方案是使用amap-webapi-python库。该库提供了一个Python客户端,用于与高德地图Web API进行交互。使用amap-webapi-python和Folium,您可以在Streamlit中创建基于高德地图的互动地图。
以下是使用Streamlit,Folium和amap-webapi-python创建高德地图的代码示例:
```python
import streamlit as st
import folium
from amap_webapi_python import AMapWebAPI
# 初始化高德地图Web API客户端
amap = AMapWebAPI(key='your_amap_web_api_key')
# 获取地点的经纬度坐标
location = amap.get_location('北京市')
# 创建Folium地图
m = folium.Map(location=[location['lat'], location['lng']], zoom_start=12)
# 添加标记
folium.Marker(location=[location['lat'], location['lng']], popup='北京市').add_to(m)
# 在Streamlit中显示地图
st.write(m._repr_html_(), unsafe_allow_html=True)
```
在上面的示例中,我们首先使用amap-webapi-python获取北京市的经纬度坐标。然后,我们在Folium中创建一个地图,并将标记添加到该地图上。最后,我们使用Streamlit在应用程序中显示地图。
请注意,为了在Streamlit中显示地图,我们需要使用Folium地图对象的_repr_html_()方法,并将其传递给Streamlit的write()函数。我们还需要设置unsafe_allow_html=True,以便Streamlit允许HTML代码的呈现。
当然,您可以使用amap-webapi-python进行更多高德地图Web API的操作,并使用Folium在Streamlit中显示结果。
基于dbscan算法对多个plt轨迹数据文件进行聚类,并且以folium高德地图可视化轨迹数据
好的,这里是基于 DBSCAN 算法对多个 .plt 轨迹数据文件进行聚类,并以 folium 高德地图可视化轨迹数据的代码实现:
首先,需要安装 folium、pandas、numpy、scikit-learn 库。
```python
!pip install folium pandas numpy scikit-learn
```
然后,按照以下步骤进行操作:
1. 导入所需库:
```python
import os
import pandas as pd
import numpy as np
from sklearn.cluster import DBSCAN
import folium
from folium.plugins import HeatMap
```
2. 定义函数来读取数据并将其转换为用于聚类的格式:
```python
def read_file(file_path):
data = pd.read_csv(file_path, skiprows=6, header=None, names=['lat', 'lon', 'zero', 'alt', 'days', 'date', 'time'])
data = data.drop(['zero', 'alt'], axis=1)
data = data.dropna()
data['datetime'] = pd.to_datetime(data['days'].astype(int).astype(str) + ' ' + data['time'])
data['lat'] = data['lat'].astype(float)
data['lon'] = data['lon'].astype(float)
data = data.drop(['days', 'date', 'time'], axis=1)
return np.array(data[['lat', 'lon']].values.tolist())
```
3. 定义函数来执行聚类:
```python
def perform_clustering(data, eps, min_samples):
db = DBSCAN(eps=eps, min_samples=min_samples, algorithm='ball_tree', metric='haversine').fit(np.radians(data))
cluster_labels = db.labels_
num_clusters = len(set(cluster_labels))
return cluster_labels, num_clusters
```
4. 定义函数来可视化聚类结果:
```python
def visualize_clusters(data, cluster_labels, num_clusters):
m = folium.Map(location=[data[:, 0].mean(), data[:, 1].mean()], zoom_start=12)
colors = ['red', 'blue', 'green', 'purple', 'orange', 'darkred',
'lightred', 'beige', 'darkblue', 'darkgreen', 'cadetblue',
'darkpurple', 'pink', 'lightblue', 'lightgreen', 'gray',
'black', 'lightgray']
for i in range(num_clusters):
cluster_data = data[cluster_labels == i]
if len(cluster_data) > 0:
HeatMap(cluster_data, radius=15, blur=10, max_zoom=13, gradient={0.4: colors[i % len(colors)]}).add_to(m)
return m
```
5. 遍历文件夹中的所有文件并聚类它们:
```python
file_path = 'geolife_sample' # 数据文件夹路径
eps = 100 # 聚类半径
min_samples = 10 # 最小样本数
for file_name in os.listdir(file_path):
if file_name.endswith('.plt'):
file_full_path = os.path.join(file_path, file_name)
data = read_file(file_full_path)
cluster_labels, num_clusters = perform_clustering(data, eps, min_samples)
m = visualize_clusters(data, cluster_labels, num_clusters)
html_file_path = file_full_path.replace('.plt', '.html')
m.save(html_file_path)
```
这将为每个 .plt 文件创建一个 HTML 文件,其中包含可视化的聚类结果。
希望这可以帮助您实现您的项目!
阅读全文