搜索出一个完整的人脸神经风格迁移python算法
时间: 2023-05-30 08:03:39 浏览: 126
Python-人脸搜索引擎
以下是一个完整的人脸神经风格迁移python算法:
```python
import tensorflow as tf
import numpy as np
import PIL.Image
import time
import functools
import cv2
# 定义VGG19网络,用于提取风格和内容特征
def vgg_layers(layer_names):
vgg = tf.keras.applications.VGG19(include_top=False, weights='imagenet')
vgg.trainable = False
outputs = [vgg.get_layer(name).output for name in layer_names]
model = tf.keras.Model([vgg.input], outputs)
return model
# 定义图像预处理函数
def load_and_process_img(img_path):
img = tf.keras.preprocessing.image.load_img(img_path)
img = tf.keras.preprocessing.image.img_to_array(img)
img = tf.image.resize(img, [512, 512])
img = tf.keras.applications.vgg19.preprocess_input(img)
return img
# 定义图像后处理函数
def deprocess_img(processed_img):
x = processed_img.copy()
if len(x.shape) == 4:
x = np.squeeze(x, 0)
assert len(x.shape) == 3, ("Input to deprocess image must be an image of "
"dimension [1, height, width, channel] or [height, width, channel]")
if len(x.shape) != 3:
raise ValueError("Invalid input to deprocessing image")
# perform the inverse of the preprocessing step
x[:, :, 0] += 103.939
x[:, :, 1] += 116.779
x[:, :, 2] += 123.68
x = x[:, :, ::-1]
x = np.clip(x, 0, 255).astype('uint8')
return x
# 定义内容损失函数
def content_loss(base_content, target):
return tf.reduce_mean(tf.square(base_content - target))
# 定义风格损失函数
def gram_matrix(input_tensor):
channels = int(input_tensor.shape[-1])
a = tf.reshape(input_tensor, [-1, channels])
n = tf.shape(a)[0]
gram = tf.matmul(a, a, transpose_a=True)
return gram / tf.cast(n, tf.float32)
def style_loss(base_style, gram_target):
gram_style = gram_matrix(base_style)
return tf.reduce_mean(tf.square(gram_style - gram_target))
# 定义总变差损失函数
def total_variation_loss(image):
x_deltas, y_deltas = tf.image.image_gradients(image)
return tf.reduce_mean(tf.abs(x_deltas)) + tf.reduce_mean(tf.abs(y_deltas))
# 定义训练函数
def compute_loss(model, loss_weights, init_image, gram_style_features, content_features):
style_weight, content_weight, tv_weight = loss_weights
model_outputs = model(init_image)
content_output = model_outputs['block5_conv2']
tv_loss = total_variation_loss(init_image)
content_loss_val = content_loss(content_features['block5_conv2'], content_output)
style_loss_val = 0
for name in gram_style_features.keys():
style_output = model_outputs[name]
style_loss_val += style_loss(style_output, gram_style_features[name])
style_loss_val *= style_weight / len(gram_style_features.keys())
content_loss_val *= content_weight / len(content_features.keys())
tv_loss *= tv_weight
total_loss = style_loss_val + content_loss_val + tv_loss
return total_loss, style_loss_val, content_loss_val, tv_loss
@tf.function()
def train_step(model, loss_weights, init_image, gram_style_features, content_features, optimizer):
with tf.GradientTape() as tape:
total_loss, style_loss_val, content_loss_val, tv_loss = compute_loss(model, loss_weights, init_image, gram_style_features, content_features)
grads = tape.gradient(total_loss, init_image)
optimizer.apply_gradients([(grads, init_image)])
init_image.assign(tf.clip_by_value(init_image, clip_value_min=0.0, clip_value_max=255.0))
# 定义主函数
def style_transfer(content_path, style_path, num_iterations=1000, content_weight=1e3, style_weight=1e-2, tv_weight=30):
# 加载图像
content_image = load_and_process_img(content_path)
style_image = load_and_process_img(style_path)
# 提取内容特征和风格特征
content_features = vgg_layers(['block5_conv2'])(content_image)
style_features = vgg_layers(['block1_conv1', 'block2_conv1', 'block3_conv1', 'block4_conv1', 'block5_conv1'])(style_image)
gram_style_features = {name: gram_matrix(style_features[name]) for name in style_features.keys()}
# 初始化目标图像
init_image = tf.Variable(content_image, dtype=tf.float32)
# 定义优化器
optimizer = tf.optimizers.Adam(learning_rate=5, beta_1=0.99, epsilon=1e-1)
# 定义损失权重
loss_weights = (style_weight, content_weight, tv_weight)
# 训练
best_loss, best_img = float('inf'), None
for i in range(num_iterations):
train_step(vgg_layers(['block5_conv2']), loss_weights, init_image, gram_style_features, content_features, optimizer)
loss, style_loss_val, content_loss_val, tv_loss = compute_loss(vgg_layers(['block5_conv2']), loss_weights, init_image, gram_style_features, content_features)
if loss < best_loss:
best_loss = loss
best_img = deprocess_img(init_image.numpy())
if i % 100 == 0:
print("Iteration: {}".format(i))
print("Total loss: {:.4e}, "
"style loss: {:.4e}, "
"content loss: {:.4e}, "
"tv loss: {:.4e}".format(loss, style_loss_val, content_loss_val, tv_loss))
return best_img
# 测试
content_path = 'content.jpg'
style_path = 'style.jpg'
result = style_transfer(content_path, style_path, num_iterations=1000, content_weight=1e3, style_weight=1e-2, tv_weight=30)
cv2.imshow("result", result)
cv2.waitKey(0)
```
阅读全文