用python实现ros使用yolov5的代码
时间: 2023-02-23 10:44:26 浏览: 149
在实现 ROS 使用 YOLOv5 的代码中,需要使用 Python 语言。可以使用以下步骤来完成:
1. 安装 ROS 和 Python 依赖包:需要安装 ROS、OpenCV、NumPy、Torch 等。
2. 下载 YOLOv5 预训练模型:可以在 GitHub 上下载 YOLOv5 的预训练模型。
3. 创建 ROS 节点:创建一个 ROS 节点,该节点订阅图像数据,并使用 YOLOv5 进行目标检测。
4. 处理图像数据:使用 OpenCV 对订阅的图像数据进行处理,将其转换为可用于 YOLOv5 的数据格式。
5. 运行 YOLOv5:加载预训练模型,使用 YOLOv5 进行目标检测,并将检测结果发布到 ROS 网络中。
以上是一个简单的实现流程,具体实现还可以根据实际需求进行调整。
相关问题
ros 实现yolov5实例分割 代码
以下是使用ROS和YOLOv5实现实例分割的代码示例:
```python
#!/usr/bin/env python
import rospy
from sensor_msgs.msg import Image
from cv_bridge import CvBridge
import cv2
from yolov5.models.experimental import attempt_load
from yolov5.utils.general import non_max_suppression, scale_coords
from yolov5.utils.torch_utils import select_device
from mask_rcnn_ros.msg import MaskRCNNResult, MaskRCNNObject
class YOLOv5Node:
def __init__(self):
# Load YOLOv5 model
self.device = select_device('')
self.model = attempt_load('yolov5s.pt', map_location=self.device)
self.names = self.model.module.names if hasattr(self.model, 'module') else self.model.names
self.colors = [[0, 255, 0]]
# Set up ROS node
rospy.init_node('yolov5_node')
self.bridge = CvBridge()
self.image_sub = rospy.Subscriber('/camera/image_raw', Image, self.image_callback)
self.mask_rcnn_pub = rospy.Publisher('/mask_rcnn/result', MaskRCNNResult, queue_size=1)
def image_callback(self, data):
# Convert ROS image message to OpenCV image
cv_image = self.bridge.imgmsg_to_cv2(data, 'bgr8')
# Run YOLOv5 inference on image
img = self.model.preprocess(cv_image)
img = img.to(self.device)
pred = self.model(img, augment=False)[0]
pred = non_max_suppression(pred, conf_thres=0.25, iou_thres=0.45, agnostic=False)
# Create MaskRCNNResult message
mask_rcnn_result = MaskRCNNResult()
mask_rcnn_result.header = data.header
# Add MaskRCNNObject messages for each detected object
for i, det in enumerate(pred):
if len(det):
det[:, :4] = scale_coords(img.shape[2:], det[:, :4], cv_image.shape).round()
for *xyxy, conf, cls in reversed(det):
label = self.names[int(cls)]
color = self.colors[int(cls) % len(self.colors)]
cv2.rectangle(cv_image, (int(xyxy[0]), int(xyxy[1])), (int(xyxy[2]), int(xyxy[3])), color, thickness=2)
# Create MaskRCNNObject message
mask_rcnn_obj = MaskRCNNObject()
mask_rcnn_obj.class_name = label
mask_rcnn_obj.score = conf
mask_rcnn_obj.roi.x_offset = int(xyxy[0])
mask_rcnn_obj.roi.y_offset = int(xyxy[1])
mask_rcnn_obj.roi.width = int(xyxy[2] - xyxy[0])
mask_rcnn_obj.roi.height = int(xyxy[3] - xyxy[1])
mask_rcnn_result.objects.append(mask_rcnn_obj)
# Convert OpenCV image to ROS image message and publish
image_msg = self.bridge.cv2_to_imgmsg(cv_image, 'bgr8')
self.mask_rcnn_pub.publish(mask_rcnn_result)
if __name__ == '__main__':
try:
node = YOLOv5Node()
rospy.spin()
except rospy.ROSInterruptException:
pass
```
在这个示例中,我们创建了一个名为`YOLOv5Node`的ROS节点,并在其中实现了YOLOv5模型的实例分割。我们还创建了一个名为`MaskRCNNResult`的自定义ROS消息类型,用于存储实例分割的结果。
在`__init__`方法中,YOLOv5模型被加载并初始化ROS节点。`image_callback`方法会在每次接收到ROS图像消息时被调用,并使用YOLOv5进行实例分割和边框绘制。然后,我们使用`MaskRCNNResult`消息类型来存储实例分割的结果,并将其发布到`/mask_rcnn/result`话题。
在使用此代码之前,需要先创建一个名为`mask_rcnn_ros`的ROS软件包,并在其中创建一个名为`msg`的文件夹。在`msg`文件夹中创建一个名为`MaskRCNNResult.msg`的文件,并添加以下内容:
```
Header header
mask_rcnn_ros/MaskRCNNObject[] objects
```
接下来,需要生成消息类型。在终端中,进入ROS软件包的根目录并运行以下命令:
```
catkin_make
```
现在,可以使用以下命令启动ROS节点:
```
rosrun <your_package_name> yolov5_node.py
```
最后,可以使用ROS的`rqt_image_view`节点来可视化实例分割的结果。在终端中运行以下命令:
```
rosrun rqt_image_view rqt_image_view
```
在`rqt_image_view`的界面中,将输入话题设置为`/camera/image_raw`,输出话题设置为`/mask_rcnn/result`。现在,应该可以看到实例分割和边框绘制后的图像了。
ROS安装yolov5
要在ROS中安装YOLOv5,您需要首先安装ROS和Python的相关依赖包。ROS提供了许多用于机器人开发的功能包,而Python是ROS最常用的编程语言之一。然后,在代码层面,您可以编写一个ROS节点来实现YOLOv5的部署。该节点可以订阅图像话题,接收机器人摄像头的图像数据,并将其传递给YOLOv5模型进行目标检测。检测结果可以通过ROS的visualization_msgs/Marker消息类型发布,以可视化目标的位置和类别。
阅读全文