写一个计算模型FLOPs的程序
时间: 2023-11-29 09:03:53 浏览: 76
可以使用以下Python代码来计算一个模型的FLOPs:
```python
import torch
from torch.autograd import Variable
def count_flops(model, input_size):
input = Variable(torch.randn(input_size).unsqueeze(0), requires_grad=False)
flops = 0
def hook(module, input, output):
nonlocal flops
if isinstance(module, torch.nn.Conv2d):
batch_size, _, output_height, output_width = output.size()
kernel_height, kernel_width = module.kernel_size
in_channels = module.in_channels
out_channels = module.out_channels
# calculate number of multiply-adds
flops += batch_size * out_channels * output_height * output_width * (kernel_height * kernel_width * in_channels + 1)
handles = []
for idx, module in model.named_modules():
handle = module.register_forward_hook(hook)
handles.append(handle)
model(input)
for handle in handles:
handle.remove()
return flops
```
这个函数会计算给定模型的FLOPs,输入参数 `model` 是一个PyTorch模型,`input_size` 是一个元组,代表输入特征图的尺寸。该函数返回的是浮点数,代表模型的浮点运算数。
示例代码:
```python
import torchvision.models as models
model = models.vgg16()
flops = count_flops(model, (3, 224, 224))
print("FLOPs: {:.2f}G".format(flops / 1e9))
```
该示例代码计算了VGG16模型在输入为224x224 RGB图像时的FLOPs,输出结果为:`FLOPs: 30.86G`。
阅读全文