解释这行代码ssim_path = ['1e0', '1e1', '1e2', '1e3', '1e4']
时间: 2023-10-23 18:36:59 浏览: 203
这行代码定义了一个名为ssim_path的列表,其中包含了5个字符串元素:'1e0'、'1e1'、'1e2'、'1e3'、'1e4'。这些字符串表示的是10的0次方、10的1次方、10的2次方、10的3次方和10的4次方,即1、10、100、1000和10000。这个列表可能是用于存储或表示不同的SSIM模型或参数组合。
相关问题
class args(): # training args epochs = 4 #"number of training epochs, default is 2" batch_size = 4 #"batch size for training, default is 4" dataset = "MSCOCO 2014 path" HEIGHT = 256 WIDTH = 256 save_model_dir = "models" #"path to folder where trained model will be saved." save_loss_dir = "models/loss" # "path to folder where trained model will be saved." image_size = 256 #"size of training images, default is 256 X 256" cuda = 1 #"set it to 1 for running on GPU, 0 for CPU" seed = 42 #"random seed for training" ssim_weight = [1,10,100,1000,10000] ssim_path = ['1e0', '1e1', '1e2', '1e3', '1e4'] lr = 1e-4 #"learning rate, default is 0.001" lr_light = 1e-4 # "learning rate, default is 0.001" log_interval = 5 #"number of images after which the training loss is logged, default is 500" resume = None resume_auto_en = None resume_auto_de = None resume_auto_fn = None # for test Final_cat_epoch_9_Wed_Jan__9_04_16_28_2019_1.0_1.0.model model_path_gray = "./models/densefuse_gray.model" model_path_rgb = "./models/densefuse_rgb.model"
这段代码定义了一个名为`args`的类,其中包含了许多训练和模型参数的设置。
下面是一些重要的参数:
- `epochs`: 训练的轮数,默认为4。
- `batch_size`: 训练时的批大小,默认为4。
- `dataset`: 数据集的路径,默认为"MSCOCO 2014 path"。
- `HEIGHT`和`WIDTH`: 训练图像的高度和宽度,默认为256。
- `save_model_dir`和`save_loss_dir`: 保存训练模型和损失的文件夹路径。
- `image_size`: 训练图像的大小,默认为256。
- `cuda`: 是否使用GPU进行训练,1表示使用GPU,0表示使用CPU。
- `seed`: 随机种子,默认为42。
- `ssim_weight`和`ssim_path`: SSIM权重和路径的设置。
- `lr`和`lr_light`: 学习率的设置。
- `log_interval`: 训练损失记录间隔,默认为5。
- `resume_*`: 恢复训练时的模型路径。
最后两个参数`model_path_gray`和`model_path_rgb`是用于测试的模型路径。
请注意,这段代码只是定义了这些参数的初始值,并没有实际使用它们。在实际使用时,你可以根据需要修改这些参数的值。
下面代码转化为paddle2.2.2代码 :from __future__ import division import os, time, scipy.io import torch import torch.nn as nn import torch.optim as optim import numpy as np import glob import cv2 import argparse from PIL import Image from skimage.measure import compare_psnr,compare_ssim from tensorboardX import SummaryWriter from models import RViDeNet from utils import * parser = argparse.ArgumentParser(description='Pretrain denoising model') parser.add_argument('--gpu_id', dest='gpu_id', type=int, default=0, help='gpu id') parser.add_argument('--num_epochs', dest='num_epochs', type=int, default=33, help='num_epochs') parser.add_argument('--patch_size', dest='patch_size', type=int, default=128, help='patch_size') parser.add_argument('--batch_size', dest='batch_size', type=int, default=1, help='batch_size') args = parser.parse_args() os.environ["CUDA_VISIBLE_DEVICES"] = str(args.gpu_id) save_dir = './pretrain_model' if not os.path.isdir(save_dir): os.makedirs(save_dir) gt_paths1 = glob.glob('./data/SRVD_data/raw_clean/MOT17-02_raw/*.tiff') gt_paths2 = glob.glob('./data/SRVD_data/raw_clean/MOT17-09_raw/*.tiff') gt_paths3 = glob.glob('./data/SRVD_data/raw_clean/MOT17-10_raw/*.tiff') gt_paths4 = glob.glob('./data/SRVD_data/raw_clean/MOT17-11_raw/*.tiff') gt_paths = gt_paths1 + gt_paths2 + gt_paths3 + gt_paths4 ps = args.patch_size # patch size for training batch_size = args.batch_size # batch size for training
把原始代码转换为PaddlePaddle 2.2.2 的代码如下:
```python
import os
import time
import argparse
import glob
import cv2
import numpy as np
from PIL import Image
from skimage.measure import compare_psnr, compare_ssim
from tensorboardX import SummaryWriter
from models import RViDeNet
from utils import *
import paddle
from paddle import nn
from paddle.optimizer import optim
paddle.set_device('gpu')
parser = argparse.ArgumentParser(description='Pretrain denoising model')
parser.add_argument('--gpu_id', dest='gpu_id', type=int, default=0, help='gpu id')
parser.add_argument('--num_epochs', dest='num_epochs', type=int, default=33, help='num_epochs')
parser.add_argument('--patch_size', dest='patch_size', type=int, default=128, help='patch_size')
parser.add_argument('--batch_size', dest='batch_size', type=int, default=1, help='batch_size')
args = parser.parse_args()
save_dir = './pretrain_model'
if not os.path.isdir(save_dir):
os.makedirs(save_dir)
gt_paths1 = glob.glob('./data/SRVD_data/raw_clean/MOT17-02_raw/*.tiff')
gt_paths2 = glob.glob('./data/SRVD_data/raw_clean/MOT17-09_raw/*.tiff')
gt_paths3 = glob.glob('./data/SRVD_data/raw_clean/MOT17-10_raw/*.tiff')
gt_paths4 = glob.glob('./data/SRVD_data/raw_clean/MOT17-11_raw/*.tiff')
gt_paths = gt_paths1 + gt_paths2 + gt_paths3 + gt_paths4
ps = args.patch_size # patch size for training
batch_size = args.batch_size # batch size for training
num_epochs = args.num_epochs
train_dataset = DatasetDenoising(gt_paths, ps=ps)
train_loader = paddle.io.DataLoader(train_dataset, batch_size=batch_size, shuffle=True, num_workers=4)
model = RViDeNet()
model.train()
optimizer = optim.Adam(learning_rate=1e-4, parameters=model.parameters())
writer = SummaryWriter()
for epoch in range(num_epochs):
epoch_start_time = time.time()
epoch_loss = 0
for i, (noisy_patches, gt_patches) in enumerate(train_loader()):
noisy_patches = paddle.to_tensor(noisy_patches)
gt_patches = paddle.to_tensor(gt_patches)
output = model(noisy_patches)
loss = nn.functional.mse_loss(output, gt_patches)
optimizer.clear_grad()
loss.backward()
optimizer.step()
epoch_loss += loss
epoch_time = time.time() - epoch_start_time
epoch_loss = epoch_loss / len(train_loader)
print("Epoch [{}/{}] Loss: {:.5f} [{:.2f}s]".format(epoch + 1, num_epochs, epoch_loss, epoch_time))
writer.add_scalar("Loss/train", epoch_loss, epoch + 1)
if (epoch + 1) % 10 == 0:
model_path = os.path.join(save_dir, 'RViDeNet_epoch{}.pdparams'.format(epoch + 1))
paddle.save(model.state_dict(), model_path)
print("Saving model to: {}".format(model_path))
writer.close()
```
阅读全文