具体代码
时间: 2023-07-03 18:22:40 浏览: 110
数据结构具体代码实现
具体的代码会根据你使用的深度学习框架和音乐生成模型而有所不同。以 TensorFlow 和 MIDI-GAN 为例,下面是一个简单的训练和生成 MIDI 音乐的示例代码:
```python
import tensorflow as tf
import numpy as np
import pretty_midi
# 定义 MIDI-GAN 模型
class MIDIGAN(tf.keras.Model):
def __init__(self, latent_dim):
super(MIDIGAN, self).__init__()
self.latent_dim = latent_dim
self.generator = self.build_generator()
self.discriminator = self.build_discriminator()
def build_generator(self):
generator = tf.keras.Sequential([
tf.keras.layers.Dense(256, input_dim=self.latent_dim),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.LeakyReLU(alpha=0.2),
tf.keras.layers.Dense(512),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.LeakyReLU(alpha=0.2),
tf.keras.layers.Dense(1024),
tf.keras.layers.BatchNormalization(),
tf.keras.layers.LeakyReLU(alpha=0.2),
tf.keras.layers.Dense(256, activation='tanh')
])
return generator
def build_discriminator(self):
discriminator = tf.keras.Sequential([
tf.keras.layers.Dense(1024, input_dim=256),
tf.keras.layers.LeakyReLU(alpha=0.2),
tf.keras.layers.Dropout(0.3),
tf.keras.layers.Dense(512),
tf.keras.layers.LeakyReLU(alpha=0.2),
tf.keras.layers.Dropout(0.3),
tf.keras.layers.Dense(256),
tf.keras.layers.LeakyReLU(alpha=0.2),
tf.keras.layers.Dropout(0.3),
tf.keras.layers.Dense(1, activation='sigmoid')
])
discriminator.compile(loss='binary_crossentropy', optimizer=tf.keras.optimizers.Adam(lr=0.0002, beta_1=0.5))
return discriminator
def build_gan(self):
self.discriminator.trainable = False
gan = tf.keras.Sequential([self.generator, self.discriminator])
gan.compile(loss='binary_crossentropy', optimizer=tf.keras.optimizers.Adam(lr=0.0002, beta_1=0.5))
return gan
def train(self, X_train, epochs, batch_size):
for epoch in range(epochs):
# 生成随机噪声
noise = np.random.normal(0, 1, size=(batch_size, self.latent_dim))
# 生成器生成假数据
fake_X = self.generator.predict(noise)
# 随机选择真实数据
idx = np.random.randint(0, X_train.shape[0], batch_size)
real_X = X_train[idx]
# 训练判别器
self.discriminator.trainable = True
self.discriminator.train_on_batch(real_X, np.ones((batch_size, 1)))
self.discriminator.train_on_batch(fake_X, np.zeros((batch_size, 1)))
# 训练生成器
self.discriminator.trainable = False
self.gan.train_on_batch(noise, np.ones((batch_size, 1)))
# 每 10 个 epoch 打印一次损失
if epoch % 10 == 0:
d_loss = self.discriminator.evaluate(np.concatenate([real_X, fake_X]), np.concatenate([np.ones((batch_size, 1)), np.zeros((batch_size, 1))]))
g_loss = self.gan.evaluate(noise, np.ones((batch_size, 1)))
print('Epoch %d: loss_d=%.4f, loss_g=%.4f' % (epoch, d_loss, g_loss))
def generate(self, n):
noise = np.random.normal(0, 1, size=(n, self.latent_dim))
generated_midi = self.generator.predict(noise)
# 将输出转换成 MIDI 格式
generated_midi = np.interp(generated_midi, (-1, 1), (0, 127)).astype(int)
generated_midi = np.clip(np.diff(generated_midi, axis=1), -127, 127)
generated_midi = np.cumsum(generated_midi, axis=1)
# 创建 MIDI 对象
midi = pretty_midi.PrettyMIDI()
piano_program = pretty_midi.instrument_name_to_program('Acoustic Grand Piano')
piano = pretty_midi.Instrument(program=piano_program)
for i in range(n):
notes = np.nonzero(generated_midi[i])
for j in range(len(notes[0])):
note = pretty_midi.Note(
velocity=80,
pitch=notes[1][j],
start=notes[0][j] * 0.2,
end=(notes[0][j] + 1) * 0.2
)
piano.notes.append(note)
midi.instruments.append(piano)
return midi
```
在上述代码中,我们定义了一个名为 `MIDIGAN` 的类,该类是一个 GAN 模型,包含了生成器、判别器和整个 GAN 模型的训练和生成方法。其中,`train()` 方法用于训练 GAN 模型,`generate()` 方法用于生成 MIDI 音乐。在 `generate()` 方法中,我们将生成的 MIDI 数组转换成 MIDI 文件,并使用 `pretty_midi` 库将其保存到本地。
阅读全文