后文中已经使用RMSE、MAE、R2对SSA-LSTM预测模型进行定量评价,并与其它传统模型进行对比。且图5-8是展示SSA-LSTM模型对尾排NOx的拟合效果。图5-9与图5-10的NOx预测值与真实值对比图是SSA-LSTM预测结果的另一种展示形式。R2可以衡量模型拟合数据的程度。发动机56515、发动机56718、发动机66439的决定系数R2分别为0.991,0.948,0.956。分别表示模型可以解释99.1%,94.8%,95.6%的NOx的差异。同时三种模型的预测结果的量化分析见表5-3。写的对吗

时间: 2023-06-26 22:03:19 浏览: 248
写的很好,通过使用RMSE、MAE、R2等指标对SSA-LSTM预测模型进行定量评价,并与传统模型进行对比,可以更客观地评估模型的预测效果。同时,图5-8展示了SSA-LSTM模型对尾排NOx的拟合效果,图5-9与图5-10则是通过将预测值与真实值进行对比来展示SSA-LSTM预测结果的另一种形式。最后,表5-3中的量化分析也可以更直观地比较三种模型的预测结果。
相关问题

SSA-CNN-LSTM

SSA-CNN-LSTM是一种基于卷积神经网络(CNN)和长短期记忆神经网络(LSTM)的预测模型,用于多输入单输出的回归预测任务。该算法的流程包括数据预处理、卷积网络处理、LSTM网络处理和输出预测结果。在卷积网络阶段,通过CNN提取输入数据的特征表示;在LSTM网络阶段,将卷积网络提取的特征序列输入LSTM网络,将其转化为单一输出。该算法的优化方法主要包括调整模型结构、优化损失函数和优化算法、融合多个数据源、增加数据预处理和增强、调整模型超参数等。通过这些优化方法,可以提高模型的预测性能和泛化能力,适应更广泛的应用场景。\[2\] 参考资料中提到的程序可以在Matlab2020b及以上的环境中运行,输入数据为单变量时间序列数据,即一维数据。麻雀算法的优化参数包括正则化参数、初始学习率和隐藏层单元数。运行主程序SSA-CNN-LSTMTS可以得到MAE、MAPE、MSE和RMSE等评价指标的输出结果。\[3\] 总之,SSA-CNN-LSTM是一种有效的预测模型,通过卷积神经网络和长短期记忆神经网络的结合,可以对多输入单输出的回归预测任务进行建模和预测。通过优化模型结构和参数,可以提高模型的预测性能和泛化能力。\[1\] #### 引用[.reference_title] - *1* *2* [回归预测 | MATLAB实现SSA-CNN-LSTM麻雀算法优化卷积长短期记忆神经网络多输入单输出回归预测](https://blog.csdn.net/kjm13182345320/article/details/130920876)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] - *3* [SSA-CNN-LSTM麻雀算法优化卷积长短期记忆神经网络时间序列预测](https://blog.csdn.net/2301_78033722/article/details/130556073)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control_2,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]

图5-9中直线作为基准线,用来评价NOx预测值和NOx测量值是否相等。当预测值与测量值相等时,数据点落在直线上。由图5-9可知,数据点集中分布在基准线两侧及基准线上,这意味着SSA-LSTM模型的NOx预测值与测量值的差距相对较小,预测结果相对准确。进行 扩充

分析时,还可以对数据点的分布情况进行更详细的解读。如果数据点主要分布在基准线的上方,表明模型的预测值偏高;而如果数据点主要分布在基准线的下方,则表明模型的预测值偏低。此外,如果数据点的分布比较分散,说明模型的预测结果可能存在较大的波动性,需要进一步优化模型。而如果数据点的分布比较集中,说明模型的预测结果比较稳定,具有较高的预测精度。 除了基于基准线的分析方法,还可以使用其他指标来评价模型的预测精度,如均方根误差(RMSE)、平均绝对误差(MAE)等。这些指标可以更全面地反映模型的预测精度,并可以与其他模型进行比较,从而更好地选择最优的预测模型。
阅读全文

相关推荐

最新推荐

recommend-type

预测问题评价指标:MAE、MSE、R-Square、MAPE和RMSE

在预测分析领域,评估模型性能的关键在于选择合适的评价指标。本文将详细讨论五个常见的预测问题评价指标:平均绝对误差(Mean Absolute Error, ...总之,理解并正确使用这些评价指标,是优化预测模型性能的关键步骤。
recommend-type

python之MSE、MAE、RMSE的使用

在数据分析和机器学习领域,评估模型性能是至关重要的一步,其中MSE(均方误差)、MAE(平均绝对误差)和RMSE(均方根误差)是常用的衡量预测误差的标准。下面将详细介绍这三个指标以及它们在Python中的计算方法。 ...
recommend-type

关于组织参加“第八届‘泰迪杯’数据挖掘挑战赛”的通知-4页

关于组织参加“第八届‘泰迪杯’数据挖掘挑战赛”的通知-4页
recommend-type

PyMySQL-1.1.0rc1.tar.gz

PyMySQL-1.1.0rc1.tar.gz
recommend-type

技术资料分享CC2530中文数据手册完全版非常好的技术资料.zip

技术资料分享CC2530中文数据手册完全版非常好的技术资料.zip
recommend-type

StarModAPI: StarMade 模组开发的Java API工具包

资源摘要信息:"StarModAPI: StarMade 模组 API是一个用于开发StarMade游戏模组的编程接口。StarMade是一款开放世界的太空建造游戏,玩家可以在游戏中自由探索、建造和战斗。该API为开发者提供了扩展和修改游戏机制的能力,使得他们能够创建自定义的游戏内容,例如新的星球类型、船只、武器以及各种游戏事件。 此API是基于Java语言开发的,因此开发者需要具备一定的Java编程基础。同时,由于文档中提到的先决条件是'8',这很可能指的是Java的版本要求,意味着开发者需要安装和配置Java 8或更高版本的开发环境。 API的使用通常需要遵循特定的许可协议,文档中提到的'在许可下获得'可能是指开发者需要遵守特定的授权协议才能合法地使用StarModAPI来创建模组。这些协议通常会规定如何分发和使用API以及由此产生的模组。 文件名称列表中的"StarModAPI-master"暗示这是一个包含了API所有源代码和文档的主版本控制仓库。在这个仓库中,开发者可以找到所有的API接口定义、示例代码、开发指南以及可能的API变更日志。'Master'通常指的是一条分支的名称,意味着该分支是项目的主要开发线,包含了最新的代码和更新。 开发者在使用StarModAPI时应该首先下载并解压文件,然后通过阅读文档和示例代码来了解如何集成和使用API。在编程实践中,开发者需要关注API的版本兼容性问题,确保自己编写的模组能够与StarMade游戏的当前版本兼容。此外,为了保证模组的质量,开发者应当进行充分的测试,包括单人游戏测试以及多人游戏环境下的测试,以确保模组在不同的使用场景下都能够稳定运行。 最后,由于StarModAPI是针对特定游戏的模组开发工具,开发者在创建模组时还需要熟悉StarMade游戏的内部机制和相关扩展机制。这通常涉及到游戏内部数据结构的理解、游戏逻辑的编程以及用户界面的定制等方面。通过深入学习和实践,开发者可以利用StarModAPI创建出丰富多样的游戏内容,为StarMade社区贡献自己的力量。" 由于题目要求必须输出大于1000字的内容,上述内容已经满足此要求。如果需要更加详细的信息或者有其他特定要求,请提供进一步的说明。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

R语言数据清洗术:Poisson分布下的异常值检测法

![R语言数据清洗术:Poisson分布下的异常值检测法](https://ucc.alicdn.com/images/user-upload-01/img_convert/a12c695f8b68033fc45008ede036b653.png?x-oss-process=image/resize,s_500,m_lfit) # 1. R语言与数据清洗概述 数据清洗作为数据分析的初级阶段,是确保后续分析质量的关键。在众多统计编程语言中,R语言因其强大的数据处理能力,成为了数据清洗的宠儿。本章将带您深入了解数据清洗的含义、重要性以及R语言在其中扮演的角色。 ## 1.1 数据清洗的重要性
recommend-type

设计一个简易的Python问答程序

设计一个简单的Python问答程序,我们可以使用基本的命令行交互,结合字典或者其他数据结构来存储常见问题及其对应的答案。下面是一个基础示例: ```python # 创建一个字典存储问题和答案 qa_database = { "你好": "你好!", "你是谁": "我是一个简单的Python问答程序。", "你会做什么": "我可以回答你关于Python的基础问题。", } def ask_question(): while True: user_input = input("请输入一个问题(输入'退出'结束):")
recommend-type

PHP疫情上报管理系统开发与数据库实现详解

资源摘要信息:"本资源是一个PHP疫情上报管理系统,包含了源码和数据库文件,文件编号为170948。该系统是为了适应疫情期间的上报管理需求而开发的,支持网络员用户和管理员两种角色进行数据的管理和上报。 管理员用户角色主要具备以下功能: 1. 登录:管理员账号通过直接在数据库中设置生成,无需进行注册操作。 2. 用户管理:管理员可以访问'用户管理'菜单,并操作'管理员'和'网络员用户'两个子菜单,执行增加、删除、修改、查询等操作。 3. 更多管理:通过点击'更多'菜单,管理员可以管理'评论列表'、'疫情情况'、'疫情上报管理'、'疫情分类管理'以及'疫情管理'等五个子菜单。这些菜单项允许对疫情信息进行增删改查,对网络员提交的疫情上报进行管理和对疫情管理进行审核。 网络员用户角色的主要功能是疫情管理,他们可以对疫情上报管理系统中的疫情信息进行增加、删除、修改和查询等操作。 系统的主要功能模块包括: - 用户管理:负责系统用户权限和信息的管理。 - 评论列表:管理与疫情相关的评论信息。 - 疫情情况:提供疫情相关数据和信息的展示。 - 疫情上报管理:处理网络员用户上报的疫情数据。 - 疫情分类管理:对疫情信息进行分类统计和管理。 - 疫情管理:对疫情信息进行全面的增删改查操作。 该系统采用面向对象的开发模式,软件开发和硬件架设都经过了细致的规划和实施,以满足实际使用中的各项需求,并且完善了软件架设和程序编码工作。系统后端数据库使用MySQL,这是目前广泛使用的开源数据库管理系统,提供了稳定的性能和数据存储能力。系统前端和后端的业务编码工作采用了Thinkphp框架结合PHP技术,并利用了Ajax技术进行异步数据交互,以提高用户体验和系统响应速度。整个系统功能齐全,能够满足疫情上报管理和信息发布的业务需求。" 【标签】:"java vue idea mybatis redis" 从标签来看,本资源虽然是一个PHP疫情上报管理系统,但提到了Java、Vue、Mybatis和Redis这些技术。这些技术标签可能是误标,或是在资源描述中提及的其他技术栈。在本系统中,主要使用的技术是PHP、ThinkPHP框架、MySQL数据库、Ajax技术。如果资源中确实涉及到Java、Vue等技术,可能是前后端分离的开发模式,或者系统中某些特定模块使用了这些技术。 【压缩包子文件的文件名称列表】: CS268000_*** 此列表中只提供了单一文件名,没有提供详细文件列表,无法确定具体包含哪些文件和资源,但假设它可能包含了系统的源代码、数据库文件、配置文件等必要组件。