matlab深度学习目标检测医学图像代码
时间: 2023-07-08 11:10:26 浏览: 160
基于深度学习的医学图像分析
以下是一个基于Matlab深度学习工具箱的目标检测示例代码,可以用于医学图像:
```matlab
% 导入数据
imds = imageDatastore('path_to_image_directory');
blds = boxLabelDatastore('path_to_label_directory');
% 划分训练集和测试集
[train_imds,test_imds] = splitEachLabel(imds, 0.8, 'randomized');
[train_blds,test_blds] = splitEachLabel(blds, 0.8, 'randomized');
% 定义网络
inputLayer = imageInputLayer([224 224 3]);
convLayer1 = convolution2dLayer(3,64,'Padding',1);
reluLayer1 = reluLayer();
convLayer2 = convolution2dLayer(3,64,'Padding',1);
reluLayer2 = reluLayer();
poolingLayer1 = maxPooling2dLayer(2,'Stride',2);
convLayer3 = convolution2dLayer(3,128,'Padding',1);
reluLayer3 = reluLayer();
convLayer4 = convolution2dLayer(3,128,'Padding',1);
reluLayer4 = reluLayer();
poolingLayer2 = maxPooling2dLayer(2,'Stride',2);
convLayer5 = convolution2dLayer(3,256,'Padding',1);
reluLayer5 = reluLayer();
convLayer6 = convolution2dLayer(3,256,'Padding',1);
reluLayer6 = reluLayer();
convLayer7 = convolution2dLayer(3,256,'Padding',1);
reluLayer7 = reluLayer();
poolingLayer3 = maxPooling2dLayer(2,'Stride',2);
convLayer8 = convolution2dLayer(3,512,'Padding',1);
reluLayer8 = reluLayer();
convLayer9 = convolution2dLayer(3,512,'Padding',1);
reluLayer9 = reluLayer();
convLayer10 = convolution2dLayer(3,512,'Padding',1);
reluLayer10 = reluLayer();
poolingLayer4 = maxPooling2dLayer(2,'Stride',2);
convLayer11 = convolution2dLayer(3,512,'Padding',1);
reluLayer11 = reluLayer();
convLayer12 = convolution2dLayer(3,512,'Padding',1);
reluLayer12 = reluLayer();
convLayer13 = convolution2dLayer(3,512,'Padding',1);
reluLayer13 = reluLayer();
poolingLayer5 = maxPooling2dLayer(2,'Stride',2);
fcLayer1 = fullyConnectedLayer(4096);
reluLayer14 = reluLayer();
dropoutLayer1 = dropoutLayer();
fcLayer2 = fullyConnectedLayer(4096);
reluLayer15 = reluLayer();
dropoutLayer2 = dropoutLayer();
fcLayer3 = fullyConnectedLayer(numClasses);
softmaxLayer = softmaxLayer();
classificationLayer = classificationLayer();
% 连接网络
layers = [
inputLayer
convLayer1
reluLayer1
convLayer2
reluLayer2
poolingLayer1
convLayer3
reluLayer3
convLayer4
reluLayer4
poolingLayer2
convLayer5
reluLayer5
convLayer6
reluLayer6
convLayer7
reluLayer7
poolingLayer3
convLayer8
reluLayer8
convLayer9
reluLayer9
convLayer10
reluLayer10
poolingLayer4
convLayer11
reluLayer11
convLayer12
reluLayer12
convLayer13
reluLayer13
poolingLayer5
fcLayer1
reluLayer14
dropoutLayer1
fcLayer2
reluLayer15
dropoutLayer2
fcLayer3
softmaxLayer
classificationLayer];
% 定义训练选项
miniBatchSize = 16;
numIterationsPerEpoch = floor(numel(train_imds.Files)/miniBatchSize);
options = trainingOptions('sgdm', ...
'MiniBatchSize',miniBatchSize, ...
'MaxEpochs',10, ...
'InitialLearnRate',1e-4, ...
'LearnRateSchedule','piecewise', ...
'LearnRateDropFactor',0.1, ...
'LearnRateDropPeriod',5, ...
'Shuffle','every-epoch', ...
'CheckpointPath','path_to_checkpoint_directory', ...
'Verbose',false, ...
'Plots','training-progress');
% 训练网络
detector = trainFasterRCNNObjectDetector(train_imds, train_blds, layers, options);
% 测试网络
detectionResults = detect(detector, test_imds);
% 显示结果
for i = 1:length(test_imds.Files)
img = imread(test_imds.Files{i});
bbox = detectionResults{i};
img = insertShape(img, 'Rectangle', bbox, 'LineWidth', 3);
imshow(img);
end
```
这个代码片段使用了一个基于Faster R-CNN的深度学习模型进行目标检测,可以在医学图像中使用。但是需要注意的是,这个示例代码并不是一个完整的工作流程,你需要根据自己的具体需求进行修改和优化。
阅读全文