用at89C51单片机,编程一套单片机最小系统,要求使用单片机并行口能够控制16盏LED灯进行花式点亮,根据3个开关的组合状态选择LED的不同点亮模式

时间: 2024-05-29 09:10:11 浏览: 20
1. 硬件设计: 在at89C51单片机上搭建最小系统,需要包括以下元件: 1)at89C51单片机 2)晶振(一般为11.0592MHz) 3)电源电路(包括稳压电路和滤波电容) 4)外部存储器(EEPROM或Flash) 5)并行口驱动芯片(74HC595或74HC164) 6)16个LED灯及对应电阻 7)3个开关 其中,晶振的主频一般选择11.0592MHz,因为它是at89C51单片机内部时钟信号的倍频,可以提高程序执行速度。电源电路需要包括一个稳压电路和滤波电容,以保证单片机工作的稳定性。外部存储器可以选择EEPROM或Flash,用于存储程序代码。并行口驱动芯片可以选择74HC595或74HC164,用于控制16个LED灯的点亮和熄灭。LED灯需要连接对应的电阻,以限制电流。开关用于选择LED的不同点亮模式。 2. 软件设计: 在at89C51单片机上编程,需要使用汇编语言或C语言。下面以C语言为例,给出一个简单的程序示例: #include <reg51.h> sbit S1 = P1^0; // 定义开关1的输入口 sbit S2 = P1^1; // 定义开关2的输入口 sbit S3 = P1^2; // 定义开关3的输入口 sbit LATCH = P2^0; // 定义74HC595的锁存端口 sbit SCLK = P2^1; // 定义74HC595的时钟端口 sbit DATA = P2^2; // 定义74HC595的数据端口 void delay(unsigned int i) // 延时函数 { while(i--); } void send_data(unsigned char t) // 发送数据到74HC595 { unsigned char i; for(i=0; i<8; i++) { DATA = (t >> i) & 0x01; // 先传送最高位数据 SCLK = 1; // 上升沿时钟,移位寄存器数据移位 SCLK = 0; } LATCH = 1; // 上升沿锁存,将移位寄存器的数据输出到输出寄存器 LATCH = 0; } void main() { unsigned char led_data = 0xff; // 初始值为全灭 while(1) { if(S1 == 0 && S2 == 0 && S3 == 0) // 开关1、2、3均按下,点亮所有LED { led_data = 0x00; // 全亮 } else if(S1 == 0 && S2 == 0 && S3 == 1) // 开关1、2按下,点亮前8个LED { led_data = 0x00; // 前8个LED亮 } else if(S1 == 0 && S2 == 1 && S3 == 0) // 开关1、3按下,点亮后8个LED { led_data = 0xff; // 后8个LED亮 } else if(S1 == 0 && S2 == 1 && S3 == 1) // 开关1按下,点亮奇数LED { led_data = 0x55; // 奇数LED亮 } else if(S1 == 1 && S2 == 0 && S3 == 0) // 开关2、3按下,点亮偶数LED { led_data = 0xaa; // 偶数LED亮 } else if(S1 == 1 && S2 == 0 && S3 == 1) // 开关2按下,点亮交替LED { led_data = 0x33; // 交替LED亮 } else if(S1 == 1 && S2 == 1 && S3 == 0) // 开关3按下,点亮滚动LED { led_data = 0xfe; // 滚动LED亮 while(S3 == 0) // 按下开关3继续滚动,松开停止 { send_data(led_data); delay(1000); led_data = (led_data << 1) | 0x01; // 左移1位,最低位补1 } } else // 其他情况,全灭 { led_data = 0xff; // 全灭 } send_data(led_data); // 发送数据到74HC595,控制LED点亮 } } 在程序中,定义了三个输入口S1、S2、S3,用于读取三个开关的状态。定义了三个输出口LATCH、SCLK、DATA,用于控制74HC595芯片的工作。程序通过判断开关的状态,选择不同的LED点亮模式,将对应的数据发送到74HC595芯片,控制LED点亮。 3. 总结: 在at89C51单片机上搭建最小系统,可以通过并行口驱动芯片控制16个LED灯进行花式点亮,根据三个开关的组合状态选择LED的不同点亮模式。程序设计需要注意硬件接口的定义和数据的传输方式,以实现所需的功能。

相关推荐

最新推荐

recommend-type

基于AT89C51单片机的交通灯控制系统设计与仿真

AT89C51单片机的交通灯控制系统是由AT89C51单片机、键盘电路、LED倒计时、交通灯显示等模块组成。系统除基本交通灯功能外,还具有通行时间手动设置、可倒计时显示、急车强行通过、交通特殊情况处理等相关功能,实验...
recommend-type

基于AT89C51单片机的LED彩灯控制器设计

"AT89C51单片机LED彩灯控制器设计" 本文介绍了基于AT89C51单片机的LED彩灯...AT89C51单片机的LED彩灯控制器设计通过对TWI总线的详细介绍,旨在介绍一种对TWI总线进行编程的方法,对TWI的正确使用具有现实的指导意义。
recommend-type

基于AT89C51单片机的十进制计算器系统设计

本设计是基于AT89C51 单片机进行的十进制计算器系统设计,可以完成计算器的键盘输入,进行加、减、乘、除4 位无符号数字的简单四则运算,并在LED 上相应的显示结果。硬件方面从功能考虑,首先选择内部存储资源丰富的...
recommend-type

基于AT89C51单片机的变频调速控制系统设计

本文中,设计变频调速控制系统时,控制芯片采用单片机AT89C51,采用SA8281作为正弦波发生器,用IR2110芯片来驱动,另外考虑到系统的稳定性,设计了系统的保护电路,这样整个系统有成本低廉,功能齐全的特点,并具有...
recommend-type

基于AT89C51单片机的交通灯控制系统的设计.docx

该系统实现了交通灯的基本功能,单片机直接控制东西方向和南北方向红黄、绿信号灯的状态变化,将发光二极管接到单片机P1口上,利用单片机的定时器产生秒信号,控制十字路口的红绿黄灯交替点亮和熄灭,使四个路口的...
recommend-type

基于嵌入式ARMLinux的播放器的设计与实现 word格式.doc

本文主要探讨了基于嵌入式ARM-Linux的播放器的设计与实现。在当前PC时代,随着嵌入式技术的快速发展,对高效、便携的多媒体设备的需求日益增长。作者首先深入剖析了ARM体系结构,特别是针对ARM9微处理器的特性,探讨了如何构建适用于嵌入式系统的嵌入式Linux操作系统。这个过程包括设置交叉编译环境,优化引导装载程序,成功移植了嵌入式Linux内核,并创建了适合S3C2410开发板的根文件系统。 在考虑到嵌入式系统硬件资源有限的特点,通常的PC机图形用户界面(GUI)无法直接应用。因此,作者选择了轻量级的Minigui作为研究对象,对其实体架构进行了研究,并将其移植到S3C2410开发板上,实现了嵌入式图形用户界面,使得系统具有简洁而易用的操作界面,提升了用户体验。 文章的核心部分是将通用媒体播放器Mplayer移植到S3C2410开发板上。针对嵌入式环境中的音频输出问题,作者针对性地解决了Mplayer播放音频时可能出现的不稳定性,实现了音乐和视频的无缝播放,打造了一个完整的嵌入式多媒体播放解决方案。 论文最后部分对整个项目进行了总结,强调了在嵌入式ARM-Linux平台上设计播放器所取得的成果,同时也指出了一些待改进和完善的方面,如系统性能优化、兼容性提升以及可能的扩展功能等。关键词包括嵌入式ARM-Linux、S3C2410芯片、Mplayer多媒体播放器、图形用户界面(GUI)以及Minigui等,这些都反映出本文研究的重点和领域。 通过这篇论文,读者不仅能了解到嵌入式系统与Linux平台结合的具体实践,还能学到如何在资源受限的环境中设计和优化多媒体播放器,为嵌入式技术在多媒体应用领域的进一步发展提供了有价值的经验和参考。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

Python字符串为空判断的动手实践:通过示例掌握技巧

![Python字符串为空判断的动手实践:通过示例掌握技巧](https://img-blog.csdnimg.cn/72f88d4fc1164d6c8b9c29d8ab5ed75c.png?x-oss-process=image/watermark,type_d3F5LXplbmhlaQ,shadow_50,text_Q1NETiBASGFyYm9yIExhdQ==,size_20,color_FFFFFF,t_70,g_se,x_16) # 1. Python字符串为空判断的基础理论 字符串为空判断是Python编程中一项基本且重要的任务。它涉及检查字符串是否为空(不包含任何字符),这在
recommend-type

box-sizing: border-box;作用是?

`box-sizing: border-box;` 是 CSS 中的一个样式属性,它改变了元素的盒模型行为。默认情况下,浏览器会计算元素内容区域(content)、内边距(padding)和边框(border)的总尺寸,也就是所谓的"标准盒模型"。而当设置为 `box-sizing: border-box;` 后,元素的总宽度和高度会包括内容、内边距和边框的总空间,这样就使得开发者更容易控制元素的实际布局大小。 具体来说,这意味着: 1. 内容区域的宽度和高度不会因为添加内边距或边框而自动扩展。 2. 边框和内边距会从元素的总尺寸中减去,而不是从内容区域开始计算。
recommend-type

经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf

本文主要探讨的是"经典:大学答辩通过_基于ARM微处理器的嵌入式指纹识别系统设计.pdf",该研究专注于嵌入式指纹识别技术在实际应用中的设计和实现。嵌入式指纹识别系统因其独特的优势——无需外部设备支持,便能独立完成指纹识别任务,正逐渐成为现代安全领域的重要组成部分。 在技术背景部分,文章指出指纹的独特性(图案、断点和交叉点的独一无二性)使其在生物特征认证中具有很高的可靠性。指纹识别技术发展迅速,不仅应用于小型设备如手机或门禁系统,也扩展到大型数据库系统,如连接个人电脑的桌面应用。然而,桌面应用受限于必须连接到计算机的条件,嵌入式系统的出现则提供了更为灵活和便捷的解决方案。 为了实现嵌入式指纹识别,研究者首先构建了一个专门的开发平台。硬件方面,详细讨论了电源电路、复位电路以及JTAG调试接口电路的设计和实现,这些都是确保系统稳定运行的基础。在软件层面,重点研究了如何在ARM芯片上移植嵌入式操作系统uC/OS-II,这是一种实时操作系统,能够有效地处理指纹识别系统的实时任务。此外,还涉及到了嵌入式TCP/IP协议栈的开发,这是实现系统间通信的关键,使得系统能够将采集的指纹数据传输到远程服务器进行比对。 关键词包括:指纹识别、嵌入式系统、实时操作系统uC/OS-II、TCP/IP协议栈。这些关键词表明了论文的核心内容和研究焦点,即围绕着如何在嵌入式环境中高效、准确地实现指纹识别功能,以及与外部网络的无缝连接。 这篇论文不仅深入解析了嵌入式指纹识别系统的硬件架构和软件策略,而且还展示了如何通过结合嵌入式技术和先进操作系统来提升系统的性能和安全性,为未来嵌入式指纹识别技术的实际应用提供了有价值的研究成果。