现有代码和数据% 清空工作区变量和命令窗口内容 clear clc % 加载数据集 load ('E:\Onedrive\桌面\毕设\朴素贝叶斯图像分类\test_images.mat'); load ('E:\Onedrive\桌面\毕设\朴素贝叶斯图像分类\test_labels.mat'); load ('E:\Onedrive\桌面\毕设\朴素贝叶斯图像分类\train_images.mat'); load ('E:\Onedrive\桌面\毕设\朴素贝叶斯图像分类\train_labels.mat');请在此基础上利用matlab实现了一个基于贝叶斯分类器的手写数字识别模型。主要分为以下步骤: 解析MNIST数据集,分别读取训练集和测试集中的图像和标签数据。 对图像数据进行二值化处理并提取特征,提取后的特征为14*14的二值图像。 使用贝叶斯分类器对提取后的特征进行分类训练,并计算先验概率和类条件概率。 对测试集进行特征提取和分类,最终输出分类结果和准确率。 给出主程序和所有用到的m文件

时间: 2023-07-13 20:26:10 浏览: 118
以下是一个基于贝叶斯分类器的手写数字识别模型的 MATLAB 代码: 主程序 main.m: ```matlab clear; clc; % 加载数据集 load('train_images.mat'); load('train_labels.mat'); load('test_images.mat'); load('test_labels.mat'); % 对图像数据进行二值化处理并提取特征 train_features = extract_features(train_images); test_features = extract_features(test_images); % 使用贝叶斯分类器对提取后的特征进行分类训练,并计算先验概率和类条件概率 [prior, likelihood] = train(train_features, train_labels); % 对测试集进行特征提取和分类,最终输出分类结果和准确率 [accuracy, predicted_labels] = test(test_features, test_labels, prior, likelihood); fprintf('Accuracy: %.2f%%\n', accuracy*100); ``` 提取特征 extract_features.m: ```matlab function features = extract_features(images) % 对图像数据进行二值化处理并提取特征 % 图像二值化 binary_images = imbinarize(images); % 图像缩放 resized_images = imresize(binary_images, [14 14]); % 特征提取 features = reshape(resized_images, size(resized_images,1)*size(resized_images,2), size(resized_images,3)); end ``` 训练 train.m: ```matlab function [prior, likelihood] = train(features, labels) % 使用贝叶斯分类器对提取后的特征进行分类训练,并计算先验概率和类条件概率 % 计算先验概率 prior = zeros(1, 10); for i = 1:10 prior(i) = sum(labels == (i-1)) / length(labels); end % 计算类条件概率 likelihood = zeros(size(features, 1), 10); for i = 1:10 x = features(:, labels == (i-1)); likelihood(:, i) = sum(x, 2) / size(x, 2); end end ``` 测试 test.m: ```matlab function [accuracy, predicted_labels] = test(test_features, test_labels, prior, likelihood) % 对测试集进行特征提取和分类,最终输出分类结果和准确率 % 计算后验概率 posterior = test_features'*log(likelihood) + log(prior); % 预测标签 [~, predicted_labels] = max(posterior, [], 2); predicted_labels = predicted_labels - 1; % 计算准确率 accuracy = sum(predicted_labels == test_labels) / length(test_labels); end ``` 注意:以上代码中的路径需要根据实际情况进行修改。
阅读全文

相关推荐

clc; clear all; close all; doTraining = 1; % 是否训练 %% 数据集标注 % trainingImageLabeler %% 导入数据集 load('data400.mat'); len = (size(data400, 1))/2; percent = 0.6; % 划分训练集 potData = data400(len+1:end, [1 3]); trainLen = round(len*percent); trainImg = potData([1:trainLen], 1:2); testImg = potData([(trainLen+1):len], 1:2); %% 网络参数 % 输入图片尺寸 imageSize = [128 128 3]; % 定义要检测的对象类的数量 numClasses = width(trainImg) - 1; % 根据训练数据估计检测框大小 trainingData = boxLabelDatastore(trainImg(:,2:end)); numAnchors = 1; % 一种检测框 [anchorBoxes, meanIoU] = estimateAnchorBoxes(trainingData, numAnchors); %% 搭建网络 % 导入基础训练网络resnet18 baseNetwork = resnet18(); % analyzeNetwork(baseNetwork) % 查看基础网络结构 % 指定特征提取层 featureLayer = 'res3a_relu'; % 创建 YOLO v2 对象检测网络 lgraph = yolov2Layers(imageSize,numClasses,anchorBoxes,baseNetwork,featureLayer); % analyzeNetwork(lgraph); % 查看搭建的YOLO网络结构 %% 训练YOLO检测网络 if doTraining % 训练参数 adam rmsprop options = trainingOptions('rmsprop', ... 'MiniBatchSize', 50, .... 'InitialLearnRate', 0.001, ... 'MaxEpochs', 100,... 'ExecutionEnvironment','cpu',... 'Shuffle', 'every-epoch'); % 训练检测器 [detector, info] = trainYOLOv2ObjectDetector(trainImg, lgraph, options); save(['模型New/model' num2str(round(rand*1000)) '.mat'], 'detector', 'info') else % 导入已训练模型 modelName = ''; load(modelName); end %% 查看训练结果 disp(detector) figure plot(info.TrainingLoss) grid on xlabel('Number of Iterations') ylabel('Training Loss for Each Iteration')给我非常详细的,一字一句的解释,一句一句的解释这段代码

逐步解释% matlab mobile传感器数据,从手机导入到本地即可 clear;close all;clc; load('sensorlog_20230601_123433.mat'); lat = Position.latitude; lon = Position.longitude; altitude = Position.altitude; timestamp = Position.Timestamp; spd = Position.speed; nums = length(lat); nBins = 10; binSpacing = (max(spd) - min(spd))/nBins; binRanges = min(spd):binSpacing:max(spd)-binSpacing; % 添加下确界 binRanges(end+1) = inf; % |histc| 确定值落入哪一个bin [~, spdBins] = histc(spd, binRanges); lat = lat'; lon = lon'; spdBins = spdBins'; % 创建一个地理形状矢量,该矢量将线段存储为features s = geoshape(); for k = 1:nBins % 保留与当前bin匹配的经纬度,其余部分保留为NaN,NaN为线段中的中断 latValid = nan(1, length(lat)); latValid(spdBins==k) = lat(spdBins==k); lonValid = nan(1, length(lon)); lonValid(spdBins==k) = lon(spdBins==k); % 保留从当前速度bin转换到另一个速度bin后出现的经纬度使路径连续 transitions = [diff(spdBins) 0]; insertionInd = find(spdBins==k & transitions~=0) + 1; % 预分配空间并插入额外的经纬度 latSeg = zeros(1, length(latValid) + length(insertionInd)); latSeg(insertionInd + (0:length(insertionInd)-1)) = lat(insertionInd); latSeg(~latSeg) = latValid; lonSeg = zeros(1, length(lonValid) + length(insertionInd)); lonSeg(insertionInd + (0:length(insertionInd)-1)) = lon(insertionInd); lonSeg(~lonSeg) = lonValid; % 将经纬度线段添加到地理形状矢量 s(k) = geoshape(latSeg, lonSeg); end wm = webmap('World Imagery'); mwLat = 26.053376; mwLon = 119.187501; name = 'School'; iconDir = fullfile(matlabroot,'toolbox','matlab','icons'); iconFilename = fullfile(iconDir, 'fzu.png'); wmmarker(mwLat, mwLon, 'FeatureName', name, 'Icon', iconFilename); colors = autumn(nBins); wmline(s, 'Color', colors, 'Width', 5); wmzoom(16);

最新推荐

recommend-type

dsPIC33CK64MP105系列中文数据手册.pdf

同时,闪存具有可编程代码保护和纠错码(ECC)功能,以保证程序的稳定性和数据安全性。另外,还有8 KB的SRAM,内置自检功能(MBIST),以确保内存的可靠性。芯片还集成了256字节的可一次性编程(OTP)存储器,用于...
recommend-type

hy-1c数据读取.docx

例如,在读取海洋1C数据中的Latitude、Longitude和Rrs412等参数时,可以使用以下MATLAB代码: ```matlab close all; clear; clc; dir='E:\HY\H1C_OPER_OCT_L2A_20191103T052500_20191103T053000_06057_10\'; file=...
recommend-type

PIC18F27_47Q10中文数据手册.pdf

- **窗口看门狗定时器(WWDT)**:在看门狗清零事件间隔时间异常时,能触发复位,同时具备可变预分频比和窗口大小选择,可以在硬件或软件中配置触发源,提高了系统的可靠性。 **内存与存储** - **闪存程序存储器**...
recommend-type

YOLO算法-城市电杆数据集-496张图像带标签-电杆.zip

YOLO系列算法目标检测数据集,包含标签,可以直接训练模型和验证测试,数据集已经划分好,包含数据集配置文件data.yaml,适用yolov5,yolov8,yolov9,yolov7,yolov10,yolo11算法; 包含两种标签格:yolo格式(txt文件)和voc格式(xml文件),分别保存在两个文件夹中,文件名末尾是部分类别名称; yolo格式:<class> <x_center> <y_center> <width> <height>, 其中: <class> 是目标的类别索引(从0开始)。 <x_center> 和 <y_center> 是目标框中心点的x和y坐标,这些坐标是相对于图像宽度和高度的比例值,范围在0到1之间。 <width> 和 <height> 是目标框的宽度和高度,也是相对于图像宽度和高度的比例值; 【注】可以下拉页面,在资源详情处查看标签具体内容;
recommend-type

(177406840)JAVA图书管理系统毕业设计(源代码+论文).rar

JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代码+论文) JAVA图书管理系统毕业设计(源代
recommend-type

Java毕业设计项目:校园二手交易网站开发指南

资源摘要信息:"Java是一种高性能、跨平台的面向对象编程语言,由Sun Microsystems(现为Oracle Corporation)的James Gosling等人在1995年推出。其设计理念是为了实现简单性、健壮性、可移植性、多线程以及动态性。Java的核心优势包括其跨平台特性,即“一次编写,到处运行”(Write Once, Run Anywhere),这得益于Java虚拟机(JVM)的存在,它提供了一个中介,使得Java程序能够在任何安装了相应JVM的设备上运行,无论操作系统如何。 Java是一种面向对象的编程语言,这意味着它支持面向对象编程(OOP)的三大特性:封装、继承和多态。封装使得代码模块化,提高了安全性;继承允许代码复用,简化了代码的复杂性;多态则增强了代码的灵活性和扩展性。 Java还具有内置的多线程支持能力,允许程序同时处理多个任务,这对于构建服务器端应用程序、网络应用程序等需要高并发处理能力的应用程序尤为重要。 自动内存管理,特别是垃圾回收机制,是Java的另一大特性。它自动回收不再使用的对象所占用的内存资源,这样程序员就无需手动管理内存,从而减轻了编程的负担,并减少了因内存泄漏而导致的错误和性能问题。 Java广泛应用于企业级应用开发、移动应用开发(尤其是Android平台)、大型系统开发等领域,并且有大量的开源库和框架支持,例如Spring、Hibernate、Struts等,这些都极大地提高了Java开发的效率和质量。 标签中提到的Java、毕业设计、课程设计和开发,意味着文件“毕业设计---社区(校园)二手交易网站.zip”中的内容可能涉及到Java语言的编程实践,可能是针对学生的课程设计或毕业设计项目,而开发则指出了这些内容的具体活动。 在文件名称列表中,“SJT-code”可能是指该压缩包中包含的是一个特定的项目代码,即社区(校园)二手交易网站的源代码。这类网站通常需要实现用户注册、登录、商品发布、浏览、交易、评价等功能,并且需要后端服务器支持,如数据库连接和事务处理等。考虑到Java的特性,网站的开发可能使用了Java Web技术栈,如Servlet、JSP、Spring Boot等,以及数据库技术,如MySQL或MongoDB等。"
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【MVC标准化:肌电信号处理的终极指南】:提升数据质量的10大关键步骤与工具

![MVC标准化](https://img-blog.csdn.net/20160221141956498) # 摘要 MVC标准化是肌电信号处理中确保数据质量的重要步骤,它对于提高测量结果的准确性和可重复性至关重要。本文首先介绍肌电信号的生理学原理和MVC标准化理论,阐述了数据质量的重要性及影响因素。随后,文章深入探讨了肌电信号预处理的各个环节,包括噪声识别与消除、信号放大与滤波技术、以及基线漂移的校正方法。在提升数据质量的关键步骤部分,本文详细描述了信号特征提取、MVC标准化的实施与评估,并讨论了数据质量评估与优化工具。最后,本文通过实验设计和案例分析,展示了MVC标准化在实践应用中的具
recommend-type

能否提供一个在R语言中执行Framingham数据集判别分析的详细和完整的代码示例?

当然可以。在R语言中,Framingham数据集是一个用于心血管疾病研究的经典数据集。以下是使用`ggfortify`包结合` factoextra`包进行判别分析的一个基本步骤: 首先,你需要安装所需的库,如果尚未安装,可以使用以下命令: ```r install.packages(c("ggfortify", "factoextra")) ``` 然后加载所需的数据集并做预处理。Framingham数据集通常存储在`MASS`包中,你可以通过下面的代码加载: ```r library(MASS) data(Framingham) ``` 接下来,我们假设你已经对数据进行了适当的清洗和转换
recommend-type

Blaseball Plus插件开发与构建教程

资源摘要信息:"Blaseball Plus" Blaseball Plus是一个与游戏Blaseball相关的扩展项目,该项目提供了一系列扩展和改进功能,以增强Blaseball游戏体验。在这个项目中,JavaScript被用作主要开发语言,通过在package.json文件中定义的脚本来完成构建任务。项目说明中提到了开发环境的要求,即在20.09版本上进行开发,并且提供了一个flake.nix文件来复制确切的构建环境。虽然Nix薄片是一项处于工作状态(WIP)的功能且尚未完全记录,但可能需要用户自行安装系统依赖项,其中列出了Node.js和纱(Yarn)的特定版本。 ### 知识点详细说明: #### 1. Blaseball游戏: Blaseball是一个虚构的棒球游戏,它在互联网社区中流行,其特点是独特的规则、随机事件和社区参与的元素。 #### 2. 扩展开发: Blaseball Plus是一个扩展,它可能是为在浏览器中运行的Blaseball游戏提供额外功能和改进的软件。扩展开发通常涉及编写额外的代码来增强现有软件的功能。 #### 3. JavaScript编程语言: JavaScript是一种高级的、解释执行的编程语言,被广泛用于网页和Web应用的客户端脚本编写,是开发Web扩展的关键技术之一。 #### 4. package.json文件: 这是Node.js项目的核心配置文件,用于声明项目的各种配置选项,包括项目名称、版本、依赖关系以及脚本命令等。 #### 5.构建脚本: 描述中提到的脚本,如`build:dev`、`build:prod:unsigned`和`build:prod:signed`,这些脚本用于自动化构建过程,可能包括编译、打包、签名等步骤。`yarn run`命令用于执行这些脚本。 #### 6. yarn包管理器: Yarn是一个快速、可靠和安全的依赖项管理工具,类似于npm(Node.js的包管理器)。它允许开发者和项目管理依赖项,通过简单的命令行界面可以轻松地安装和更新包。 #### 7. Node.js版本管理: 项目要求Node.js的具体版本,这里是14.9.0版本。管理特定的Node.js版本是重要的,因为在不同版本间可能会存在API变化或其他不兼容问题,这可能会影响扩展的构建和运行。 #### 8. 系统依赖项的安装: 文档提到可能需要用户手动安装系统依赖项,这在使用Nix薄片时尤其常见。Nix薄片(Nix flakes)是一个实验性的Nix特性,用于提供可复现的开发环境和构建设置。 #### 9. Web扩展的工件放置: 构建后的工件放置在`addon/web-ext-artifacts/`目录中,表明这可能是一个基于WebExtension的扩展项目。WebExtension是一种跨浏览器的扩展API,用于创建浏览器扩展。 #### 10. 扩展部署: 描述中提到了两种不同类型的构建版本:开发版(dev)和生产版(prod),其中生产版又分为未签名(unsigned)和已签名(signed)版本。这些不同的构建版本用于不同阶段的开发和发布。 通过这份文档,我们能够了解到Blaseball Plus项目的开发环境配置、构建脚本的使用、依赖管理工具的运用以及Web扩展的基本概念和部署流程。这些知识点对于理解JavaScript项目开发和扩展构建具有重要意义。