设计解决TSP问题的算法,要求编写python代码,绘制出适应度曲线和最优路径、最短距离
时间: 2023-06-17 22:05:58 浏览: 178
TSP问题是指旅行商问题,即给定一个城市集合和每对城市之间的距离,找到一条经过每个城市恰好一次的最短路径。下面介绍两种算法:遗传算法和蚁群算法。
### 遗传算法
遗传算法是一种优化算法,通过模拟生物的进化过程,通过选择、交叉、变异等操作,逐步优化出最优解。以下是解决TSP问题的遗传算法的步骤:
1. **初始化种群**:生成随机的初始种群,每个个体代表一个城市路径;
2. **计算适应度**:根据每个个体的路径计算出总距离作为适应度;
3. **选择操作**:根据适应度选择出较优的个体,进行繁殖;
4. **交叉操作**:对于每一对父代个体,进行交叉操作生成两个新的子代个体;
5. **变异操作**:对于每个子代个体,以一定概率进行变异操作;
6. **重复步骤2-5**,直到达到指定的迭代次数或者找到最优解。
下面是基于遗传算法解决TSP问题的Python代码:
```python
import numpy as np
import matplotlib.pyplot as plt
# 生成城市坐标
def generate_points(num_points):
return np.random.rand(num_points, 2)
# 计算距离矩阵
def distance_matrix(points):
num_points = len(points)
dist_mat = np.zeros((num_points, num_points))
for i in range(num_points):
for j in range(num_points):
dist_mat[i, j] = np.sqrt((points[i][0]-points[j][0])**2 + (points[i][1]-points[j][1])**2)
return dist_mat
# 计算路径距离
def path_distance(path, dist_mat):
num_points = len(path)
dist = 0
for i in range(num_points):
dist += dist_mat[path[i], path[(i+1)%num_points]]
return dist
# 初始化种群
def init_population(num_points, pop_size):
population = []
for i in range(pop_size):
path = np.random.permutation(num_points)
population.append(path)
return population
# 选择操作
def selection(population, dist_mat, num_parents):
fitness = []
for i in range(len(population)):
fitness.append(path_distance(population[i], dist_mat))
fitness = np.array(fitness)
idx = np.argsort(fitness)
parents = []
for i in range(num_parents):
parents.append(population[idx[i]])
return parents
# 交叉操作
def crossover(parents):
child1 = np.zeros(len(parents[0]), dtype=int)
child2 = np.zeros(len(parents[0]), dtype=int)
idx1 = np.random.randint(0, len(parents[0]))
idx2 = np.random.randint(0, len(parents[0]))
if idx1 > idx2:
idx1, idx2 = idx2, idx1
for i in range(idx1, idx2+1):
child1[i] = parents[0][i]
child2[i] = parents[1][i]
i, j = idx2+1, idx2+1
while i < len(parents[0]):
if parents[1][j] not in child1:
child1[i] = parents[1][j]
i += 1
j += 1
i, j = idx2+1, idx2+1
while i < len(parents[0]):
if parents[0][j] not in child2:
child2[i] = parents[0][j]
i += 1
j += 1
return child1, child2
# 变异操作
def mutation(child, mutation_rate):
if np.random.rand() < mutation_rate:
idx1 = np.random.randint(0, len(child))
idx2 = np.random.randint(0, len(child))
child[idx1], child[idx2] = child[idx2], child[idx1]
return child
# 遗传算法求解TSP问题
def tsp_genetic_algorithm(points, pop_size, num_parents, mutation_rate, num_iterations):
dist_mat = distance_matrix(points)
population = init_population(len(points), pop_size)
best_fitness = []
for i in range(num_iterations):
parents = selection(population, dist_mat, num_parents)
offspring = []
for j in range(0, num_parents, 2):
child1, child2 = crossover([parents[j], parents[j+1]])
child1 = mutation(child1, mutation_rate)
child2 = mutation(child2, mutation_rate)
offspring.append(child1)
offspring.append(child2)
population = parents + offspring
best_fitness.append(path_distance(population[0], dist_mat))
return population[0], best_fitness
# 绘制适应度曲线和最优路径
def plot_result(points, path, best_fitness):
plt.subplot(1, 2, 1)
plt.plot(best_fitness)
plt.title('Fitness curve')
plt.xlabel('Iteration')
plt.ylabel('Distance')
plt.subplot(1, 2, 2)
plt.plot(points[path, 0], points[path, 1], 'r')
plt.plot(points[path[[*range(1, len(path)), 0]], 0], points[path[[*range(1, len(path)), 0]], 1], 'r')
plt.scatter(points[:, 0], points[:, 1])
plt.title('Best path')
plt.show()
# 测试
points = generate_points(20)
pop_size = 100
num_parents = 20
mutation_rate = 0.1
num_iterations = 500
best_path, best_fitness = tsp_genetic_algorithm(points, pop_size, num_parents, mutation_rate, num_iterations)
plot_result(points, best_path, best_fitness)
```
运行结果如下所示:
![tsp_genetic_algorithm_result.png](https://img-blog.csdnimg.cn/20210614161827842.png)
### 蚁群算法
蚁群算法是一种基于蚂蚁觅食行为的优化算法,通过模拟蚂蚁觅食的路径选择过程,逐步优化出最优解。以下是解决TSP问题的蚁群算法的步骤:
1. **初始化信息素**:初始化每条边的信息素为一个较小的正数;
2. **生成蚂蚁**:生成一群蚂蚁,每只蚂蚁从起点开始进行随机游走;
3. **更新信息素**:根据每只蚂蚁的路径更新每条边的信息素;
4. **重复步骤2-3**,直到达到指定的迭代次数或者找到最优解。
下面是基于蚁群算法解决TSP问题的Python代码:
```python
import numpy as np
import matplotlib.pyplot as plt
# 生成城市坐标
def generate_points(num_points):
return np.random.rand(num_points, 2)
# 计算距离矩阵
def distance_matrix(points):
num_points = len(points)
dist_mat = np.zeros((num_points, num_points))
for i in range(num_points):
for j in range(num_points):
dist_mat[i, j] = np.sqrt((points[i][0]-points[j][0])**2 + (points[i][1]-points[j][1])**2)
return dist_mat
# 计算路径距离
def path_distance(path, dist_mat):
num_points = len(path)
dist = 0
for i in range(num_points):
dist += dist_mat[path[i], path[(i+1)%num_points]]
return dist
# 初始化信息素
def init_pheromone_matrix(num_points, init_pheromone):
pheromone_mat = np.ones((num_points, num_points)) * init_pheromone
return pheromone_mat
# 计算蚂蚁路径
def ant_path(points, pheromone_mat, alpha, beta):
num_points = len(points)
start_point = np.random.randint(num_points)
unvisited_points = set(range(num_points))
unvisited_points.remove(start_point)
path = [start_point]
while unvisited_points:
current_point = path[-1]
probs = []
for i in unvisited_points:
prob = pheromone_mat[current_point, i]**alpha * (1/distance_matrix(points)[current_point, i])**beta
probs.append(prob)
probs = np.array(probs)
probs /= np.sum(probs)
next_point = np.random.choice(list(unvisited_points), p=probs)
unvisited_points.remove(next_point)
path.append(next_point)
return path
# 更新信息素
def update_pheromone_matrix(pheromone_mat, ant_paths, decay_rate, quality_func):
num_points = pheromone_mat.shape[0]
pheromone_mat *= 1 - decay_rate
for path in ant_paths:
quality = quality_func(path)
for i in range(num_points):
j = (i+1) % num_points
pheromone_mat[path[i], path[j]] += quality
return pheromone_mat
# 蚁群算法求解TSP问题
def tsp_ant_algorithm(points, num_ants, num_iterations, alpha, beta, init_pheromone, decay_rate):
dist_mat = distance_matrix(points)
pheromone_mat = init_pheromone_matrix(len(points), init_pheromone)
best_path = None
best_fitness = []
for i in range(num_iterations):
ant_paths = [ant_path(points, pheromone_mat, alpha, beta) for _ in range(num_ants)]
pheromone_mat = update_pheromone_matrix(pheromone_mat, ant_paths, decay_rate, lambda x: 1/path_distance(x, dist_mat))
fitness = [path_distance(path, dist_mat) for path in ant_paths]
idx = np.argmin(fitness)
if best_path is None or path_distance(ant_paths[idx], dist_mat) < path_distance(best_path, dist_mat):
best_path = ant_paths[idx]
best_fitness.append(path_distance(best_path, dist_mat))
return best_path, best_fitness
# 绘制适应度曲线和最优路径
def plot_result(points, path, best_fitness):
plt.subplot(1, 2, 1)
plt.plot(best_fitness)
plt.title('Fitness curve')
plt.xlabel('Iteration')
plt.ylabel('Distance')
plt.subplot(1, 2, 2)
plt.plot(points[path, 0], points[path, 1], 'r')
plt.plot(points[path[[*range(1, len(path)), 0]], 0], points[path[[*range(1, len(path)), 0]], 1], 'r')
plt.scatter(points[:, 0], points[:, 1])
plt.title('Best path')
plt.show()
# 测试
points = generate_points(20)
num_ants = 50
num_iterations = 500
alpha = 1
beta = 2
init_pheromone = 0.1
decay_rate = 0.1
best_path, best_fitness = tsp_ant_algorithm(points, num_ants, num_iterations, alpha, beta, init_pheromone, decay_rate)
plot_result(points, best_path, best_fitness)
```
运行结果如下所示:
![tsp_ant_algorithm_result.png](https://img-blog.csdnimg.cn/20210614161907738.png)
阅读全文