Tensorrt 可以将PyTorch中的神经网络模型转换为onnx 格式吗
时间: 2024-01-22 11:20:40 浏览: 192
是的,TensorRT可以将PyTorch中的神经网络模型转换为ONNX格式。TensorRT提供了一个Python API,您可以使用它来将PyTorch模型转换为ONNX格式,然后使用TensorRT将其优化为适用于GPU加速推理的序列化引擎。具体步骤如下:
1. 将PyTorch模型转换为ONNX格式:
```
import torch
import onnx
# Load the PyTorch model
model = torch.load('model.pt')
# Convert the PyTorch model to ONNX
dummy_input = torch.randn(1, 3, 224, 224)
input_names = ['input']
output_names = ['output']
onnx_path = 'model.onnx'
torch.onnx.export(model, dummy_input, onnx_path, verbose=False, input_names=input_names, output_names=output_names)
```
2. 使用TensorRT将ONNX模型优化为序列化引擎:
```
import tensorrt as trt
import pycuda.driver as cuda
import pycuda.autoinit
# Load the ONNX model
onnx_path = 'model.onnx'
onnx_model = onnx.load(onnx_path)
# Create a TensorRT builder and network
trt_logger = trt.Logger(trt.Logger.WARNING)
trt_builder = trt.Builder(trt_logger)
trt_network = trt_builder.create_network()
# Create an ONNX parser to parse the ONNX model into the TensorRT network
onnx_parser = trt.OnnxParser(trt_network, trt_logger)
onnx_parser.parse(onnx_model.SerializeToString())
# Set the maximum batch size and maximum workspace size
trt_builder.max_batch_size = 1
trt_builder.max_workspace_size = 1 << 30
# Build the TensorRT engine from the TensorRT network
trt_engine = trt_builder.build_cuda_engine(trt_network)
# Serialize the TensorRT engine to a file
trt_engine_path = 'model.engine'
with open(trt_engine_path, 'wb') as f:
f.write(trt_engine.serialize())
```
3. 使用TensorRT引擎进行推理:
```
import tensorrt as trt
import pycuda.driver as cuda
import pycuda.autoinit
import numpy as np
# Load the serialized TensorRT engine
trt_engine_path = 'model.engine'
with open(trt_engine_path, 'rb') as f:
trt_engine_data = f.read()
# Create a TensorRT runtime and deserialize the TensorRT engine
trt_logger = trt.Logger(trt.Logger.WARNING)
trt_runtime = trt.Runtime(trt_logger)
trt_engine = trt_runtime.deserialize_cuda_engine(trt_engine_data)
# Create a TensorRT execution context
trt_context = trt_engine.create_execution_context()
# Allocate GPU memory for the input and output tensors
input_shape = (1, 3, 224, 224)
output_shape = (1, 1000)
input_dtype = np.float32
output_dtype = np.float32
input_size = np.product(input_shape) * np.dtype(input_dtype).itemsize
output_size = np.product(output_shape) * np.dtype(output_dtype).itemsize
input_gpu = cuda.mem_alloc(input_size)
output_gpu = cuda.mem_alloc(output_size)
# Create a CUDA stream
stream = cuda.Stream()
# Initialize the input tensor with random data
input_cpu = np.random.rand(*input_shape).astype(input_dtype)
cuda.memcpy_htod_async(input_gpu, input_cpu, stream)
# Run inference on the TensorRT engine
trt_context.execute_async(1, [int(input_gpu), int(output_gpu)], stream.handle, None)
# Copy the output tensor back to the CPU
output_cpu = np.empty(output_shape, dtype=output_dtype)
cuda.memcpy_dtoh_async(output_cpu, output_gpu, stream)
# Synchronize the CUDA stream
stream.synchronize()
# Print the output tensor
print(output_cpu)
```
阅读全文