python svm算法smo cifar_使用smo算法编写svm对CIFAR-10数据分类

时间: 2024-05-09 12:16:24 浏览: 8
SVM算法通过将数据映射到高维空间,将数据分为两个类别。SVM算法的目标是找到一个超平面,可以将数据分为两个类别。SMO算法是一种优化算法,用于求解SVM中的二次规划问题。下面介绍如何使用SMO算法编写SVM对CIFAR-10数据进行分类。 首先,我们需要加载CIFAR-10数据集。CIFAR-10数据集包含10个类别的60000个32x32彩色图像。每个类别包含6000个图像。我们将使用Python中的pickle模块来加载数据集。以下是加载数据集的代码: ```python import pickle import numpy as np def unpickle(file): with open(file, 'rb') as fo: dict = pickle.load(fo, encoding='bytes') return dict def load_cifar10_data(): xs = [] ys = [] for j in range(5): d = unpickle('cifar-10-batches-py/data_batch_%d' % (j + 1)) x = d[b'data'] y = d[b'labels'] xs.append(x) ys.append(y) d = unpickle('cifar-10-batches-py/test_batch') xs.append(d[b'data']) ys.append(d[b'labels']) x = np.concatenate(xs) / np.float32(255) y = np.concatenate(ys) return x.reshape((len(x), -1)), np.array(y) ``` 接下来,我们将使用SMO算法来训练SVM模型。以下是使用SMO算法训练SVM模型的代码: ```python class SVM: def __init__(self, C, toler, kernel_opt=('linear', 0)): self.C = C self.toler = toler self.kernel_opt = kernel_opt def fit(self, X, y): n_samples, n_features = X.shape alpha = np.zeros(n_samples) b = 0 kernel = kernel_set[self.kernel_opt[0]] K = np.zeros((n_samples, n_samples)) for i in range(n_samples): K[:, i] = kernel(X, X[i], self.kernel_opt[1]) iter = 0 while iter < max_iter: num_changed_alphas = 0 for i in range(n_samples): Ei = np.dot(alpha * y, K[:, i]) + b - y[i] if (y[i] * Ei < -self.toler and alpha[i] < self.C) or \ (y[i] * Ei > self.toler and alpha[i] > 0): j = np.random.choice([x for x in range(n_samples) if x != i]) Ej = np.dot(alpha * y, K[:, j]) + b - y[j] alpha_i_old, alpha_j_old = alpha[i], alpha[j] if y[i] != y[j]: L = max(0, alpha[j] - alpha[i]) H = min(self.C, self.C + alpha[j] - alpha[i]) else: L = max(0, alpha[i] + alpha[j] - self.C) H = min(self.C, alpha[i] + alpha[j]) if L == H: continue eta = 2.0 * K[i, j] - K[i, i] - K[j, j] if eta >= 0: continue alpha[j] -= y[j] * (Ei - Ej) / eta alpha[j] = min(alpha[j], H) alpha[j] = max(alpha[j], L) if abs(alpha[j] - alpha_j_old) < 1e-5: continue alpha[i] += y[i] * y[j] * (alpha_j_old - alpha[j]) b1 = b - Ei - y[i] * (alpha[i] - alpha_i_old) * K[i, i] - \ y[j] * (alpha[j] - alpha_j_old) * K[i, j] b2 = b - Ej - y[i] * (alpha[i] - alpha_i_old) * K[i, j] - \ y[j] * (alpha[j] - alpha_j_old) * K[j, j] if 0 < alpha[i] < self.C: b = b1 elif 0 < alpha[j] < self.C: b = b2 else: b = (b1 + b2) / 2 num_changed_alphas += 1 if num_changed_alphas == 0: iter += 1 else: iter = 0 self.X = X self.y = y self.kernel = kernel self.alpha = alpha self.b = b def predict(self, X): n_samples, n_features = X.shape K = np.zeros((n_samples, len(self.X))) for i in range(n_samples): K[i, :] = self.kernel(self.X, X[i], self.kernel_opt[1]) y_pred = np.dot(self.alpha * self.y, K) + self.b return np.sign(y_pred) ``` 最后,我们使用以下代码来加载数据集并使用SMO算法训练SVM模型: ```python X, y = load_cifar10_data() y[y == 0] = -1 X_train, X_test = X[:50000], X[50000:] y_train, y_test = y[:50000], y[50000:] svm = SVM(C=1.0, toler=0.001, kernel_opt=('rbf', 1)) svm.fit(X_train, y_train) y_pred_train = svm.predict(X_train) y_pred_test = svm.predict(X_test) train_acc = np.mean(y_train == y_pred_train) test_acc = np.mean(y_test == y_pred_test) print('train_acc:', train_acc) print('test_acc:', test_acc) ``` 这样我们就使用SMO算法编写了SVM对CIFAR-10数据进行分类的代码。

相关推荐

最新推荐

recommend-type

基于多分类非线性SVM(+交叉验证法)的MNIST手写数据集训练(无框架)算法

2.通过一对一方法将45类训练样本((0,1),(0,2),…(1,2)…(2,3))送入交叉验证法,训练算法为smo 3.得出45个模型,测试时在利用投票法判定 数据结构 '''***********************************************************...
recommend-type

SMO支持向量机 算法 代码

SMO 算法支持向量机(Support Vector Machine)是一种新近出现的解决模式识别问题的有效工具。它的数学模型可以归结为一个有约束的二次规划问题。如何快速准确地解这个二次规划,是SVM推广应用中的一个重要环节。...
recommend-type

SVM算法研究--毕业设计论文

系统阐述支持向量机的统计学习理论,支持向量机理论,描述SVM训练算法,着重描述SMO算法
recommend-type

zigbee-cluster-library-specification

最新的zigbee-cluster-library-specification说明文档。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

MATLAB柱状图在信号处理中的应用:可视化信号特征和频谱分析

![matlab画柱状图](https://img-blog.csdnimg.cn/3f32348f1c9c4481a6f5931993732f97.png) # 1. MATLAB柱状图概述** MATLAB柱状图是一种图形化工具,用于可视化数据中不同类别或组的分布情况。它通过绘制垂直条形来表示每个类别或组中的数据值。柱状图在信号处理中广泛用于可视化信号特征和进行频谱分析。 柱状图的优点在于其简单易懂,能够直观地展示数据分布。在信号处理中,柱状图可以帮助工程师识别信号中的模式、趋势和异常情况,从而为信号分析和处理提供有价值的见解。 # 2. 柱状图在信号处理中的应用 柱状图在信号处理
recommend-type

HSV转为RGB的计算公式

HSV (Hue, Saturation, Value) 和 RGB (Red, Green, Blue) 是两种表示颜色的方式。下面是将 HSV 转换为 RGB 的计算公式: 1. 将 HSV 中的 S 和 V 值除以 100,得到范围在 0~1 之间的值。 2. 计算色相 H 在 RGB 中的值。如果 H 的范围在 0~60 或者 300~360 之间,则 R = V,G = (H/60)×V,B = 0。如果 H 的范围在 60~120 之间,则 R = ((120-H)/60)×V,G = V,B = 0。如果 H 的范围在 120~180 之间,则 R = 0,G = V,B =
recommend-type

JSBSim Reference Manual

JSBSim参考手册,其中包含JSBSim简介,JSBSim配置文件xml的编写语法,编程手册以及一些应用实例等。其中有部分内容还没有写完,估计有生之年很难看到完整版了,但是内容还是很有参考价值的。
recommend-type

"互动学习:行动中的多样性与论文攻读经历"

多样性她- 事实上SCI NCES你的时间表ECOLEDO C Tora SC和NCESPOUR l’Ingén学习互动,互动学习以行动为中心的强化学习学会互动,互动学习,以行动为中心的强化学习计算机科学博士论文于2021年9月28日在Villeneuve d'Asq公开支持马修·瑟林评审团主席法布里斯·勒菲弗尔阿维尼翁大学教授论文指导奥利维尔·皮耶昆谷歌研究教授:智囊团论文联合主任菲利普·普雷教授,大学。里尔/CRISTAL/因里亚报告员奥利维耶·西格德索邦大学报告员卢多维奇·德诺耶教授,Facebook /索邦大学审查员越南圣迈IMT Atlantic高级讲师邀请弗洛里安·斯特鲁布博士,Deepmind对于那些及时看到自己错误的人...3谢谢你首先,我要感谢我的两位博士生导师Olivier和Philippe。奥利维尔,"站在巨人的肩膀上"这句话对你来说完全有意义了。从科学上讲,你知道在这篇论文的(许多)错误中,你是我可以依
recommend-type

MATLAB柱状图在数据分析中的作用:从可视化到洞察

![MATLAB柱状图在数据分析中的作用:从可视化到洞察](https://img-blog.csdnimg.cn/img_convert/1a36558cefc0339f7836cca7680c0aef.png) # 1. MATLAB柱状图概述** 柱状图是一种广泛用于数据可视化的图表类型,它使用垂直条形来表示数据中不同类别或组别的值。在MATLAB中,柱状图通过`bar`函数创建,该函数接受数据向量或矩阵作为输入,并生成相应的高度条形。 柱状图的优点在于其简单性和易于理解性。它们可以快速有效地传达数据分布和组别之间的比较。此外,MATLAB提供了广泛的定制选项,允许用户调整条形颜色、