pytorch写的梯度反转层代码如何使用
时间: 2024-05-11 17:14:03 浏览: 64
pytorch-revgrad:实现梯度反转层的最小 pytorch 包
使用梯度反转层的代码步骤如下:
1. 导入必要的库
```python
import torch
import torch.nn as nn
from torch.autograd import Function
```
2. 定义梯度反转层类
```python
class GradReverse(Function):
@staticmethod
def forward(ctx, x, alpha):
ctx.alpha = alpha
return x.view_as(x)
@staticmethod
def backward(ctx, grad_output):
output = grad_output.neg() * ctx.alpha
return output, None
```
3. 定义网络模型
```python
class Net(nn.Module):
def __init__(self):
super(Net, self).__init__()
self.features = nn.Sequential(
nn.Conv2d(3, 64, kernel_size=5),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
nn.Conv2d(64, 128, kernel_size=5),
nn.ReLU(inplace=True),
nn.MaxPool2d(kernel_size=2, stride=2),
)
self.classifier = nn.Sequential(
nn.Linear(128 * 4 * 4, 1024),
nn.ReLU(inplace=True),
nn.Linear(1024, 2),
)
self.domain_classifier = nn.Sequential(
nn.Linear(128 * 4 * 4, 1024),
nn.ReLU(inplace=True),
nn.Linear(1024, 2),
)
def forward(self, x, alpha=None):
x = self.features(x)
x = x.view(x.size(0), -1)
if alpha is not None:
x = GradReverse.apply(x, alpha)
y = self.classifier(x)
d = self.domain_classifier(x)
return y, d
```
4. 训练模型
```python
net = Net()
criterion = nn.CrossEntropyLoss()
optimizer = torch.optim.SGD(net.parameters(), lr=0.01, momentum=0.9)
for epoch in range(10):
running_loss = 0.0
for i, data in enumerate(trainloader, 0):
inputs, labels = data
optimizer.zero_grad()
outputs, _ = net(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
running_loss += loss.item()
print('Epoch %d loss: %.3f' % (epoch + 1, running_loss / len(trainloader)))
```
5. 进行测试
```python
correct = 0
total = 0
with torch.no_grad():
for data in testloader:
images, labels = data
outputs, _ = net(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the network on the 10000 test images: %d %%' % (100 * correct / total))
```
这样就可以使用梯度反转层进行域适应了。
阅读全文