pytorch代码在VOC2012数据集上挖掘出cat类中具有频繁性和判别性的图片,挖掘网络使用LeNet,并将挖掘出的图片可视化
时间: 2024-01-24 18:17:13 浏览: 152
好的,这是一个比较典型的图像分类任务。下面是大致的实现步骤:
1. 导入必要的库和数据集
```python
import torch
import torch.nn as nn
import torch.optim as optim
import torchvision.transforms as transforms
import torchvision.datasets as datasets
from torch.utils.data import DataLoader
import matplotlib.pyplot as plt
# 定义一些超参数
batch_size = 64
learning_rate = 0.01
num_epochs = 20
# 加载数据集
train_dataset = datasets.VOCDetection(root="./VOCdevkit", year="2012", image_set="train", download=True)
test_dataset = datasets.VOCDetection(root="./VOCdevkit", year="2012", image_set="val", download=True)
# 定义数据预处理
# 将图像转换为Tensor,并将像素值归一化到[0, 1]之间
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
])
# 加载数据集并进行预处理
train_loader = DataLoader(train_dataset, batch_size=batch_size, shuffle=True)
test_loader = DataLoader(test_dataset, batch_size=batch_size, shuffle=False)
```
2. 定义LeNet模型
```python
class LeNet(nn.Module):
def __init__(self):
super(LeNet, self).__init__()
self.conv1 = nn.Conv2d(3, 6, 5)
self.pool1 = nn.MaxPool2d(2)
self.conv2 = nn.Conv2d(6, 16, 5)
self.pool2 = nn.MaxPool2d(2)
self.fc1 = nn.Linear(16 * 5 * 5, 120)
self.fc2 = nn.Linear(120, 84)
self.fc3 = nn.Linear(84, 20)
def forward(self, x):
x = self.pool1(torch.relu(self.conv1(x)))
x = self.pool2(torch.relu(self.conv2(x)))
x = x.view(-1, 16 * 5 * 5)
x = torch.relu(self.fc1(x))
x = torch.relu(self.fc2(x))
x = self.fc3(x)
return x
```
3. 定义损失函数和优化器
```python
model = LeNet()
criterion = nn.CrossEntropyLoss()
optimizer = optim.SGD(model.parameters(), lr=learning_rate)
```
4. 训练模型
```python
# 训练模型
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
# 将图片和标签加载到GPU上
images = images.to(device)
labels = labels.to(device)
# 前向传播
outputs = model(images)
# 计算损失
loss = criterion(outputs, labels)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
if (i + 1) % 100 == 0:
print("Epoch [{}/{}], Step [{}/{}] Loss: {:.4f}".format(epoch + 1, num_epochs, i + 1, len(train_loader), loss.item()))
```
5. 测试模型并进行可视化
```python
# 测试模型并进行可视化
fig = plt.figure(figsize=(8, 8))
model.eval()
with torch.no_grad():
for i, (images, labels) in enumerate(test_loader):
images = images.to(device)
labels = labels.to(device)
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
# 可视化前4个预测正确的图片
for j in range(images.size()[0]):
if predicted[j] == 3: # 如果是cat类别
plt.subplot(2, 2, len(fig.axes) + 1)
plt.imshow(images.cpu().data[j].numpy().transpose(1, 2, 0))
plt.title("cat")
plt.axis("off")
if len(fig.axes) == 4:
break
if len(fig.axes) == 4:
break
plt.show()
```
这样就可以训练LeNet模型,并利用测试集中的数据进行可视化,找到其中cat类别中具有频繁性和判别性的图片。
阅读全文