在使用预训练模型的resnet50中如何利用pytorch对自己的二分类图像数据集进行smote算法解决样本不平衡并产出代码
时间: 2024-05-14 17:18:11 浏览: 295
在PyTorch中使用SMOTE算法对二分类图像数据集进行样本平衡可以分为以下步骤:
1. 安装imbalanced-learn库,它是一个专门用于处理不平衡数据的Python库。
```
!pip install imbalanced-learn
```
2. 加载数据集
```
import torchvision.datasets as datasets
import torchvision.transforms as transforms
train_dataset = datasets.ImageFolder(root='path/to/train/dataset',
transform=transforms.Compose([
transforms.Resize(224),
transforms.CenterCrop(224),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406],
std=[0.229, 0.224, 0.225])
]))
```
3. 计算各个类别的样本数量
```
from collections import Counter
train_labels = [label for _, label in train_dataset]
train_labels_count = Counter(train_labels)
print(train_labels_count)
```
4. 使用imbalanced-learn库中的SMOTE算法对数据集进行重采样
```
from imblearn.over_sampling import SMOTE
# 计算每个类别的样本数量
class_sample_count = []
for label in train_labels_count.keys():
class_sample_count.append(train_labels_count[label])
# 计算每个类别的权重
class_weights = 1. / torch.tensor(class_sample_count, dtype=torch.float)
# 将每个样本的权重与对应的标签一一对应
train_targets = torch.tensor(train_labels)
class_weights_all = class_weights[train_targets]
# 对数据集进行重采样
smote = SMOTE()
train_samples, train_labels = smote.fit_resample(train_samples, train_labels)
```
5. 创建数据集和数据加载器
```
from torch.utils.data import DataLoader, TensorDataset
train_data = TensorDataset(torch.tensor(train_samples), torch.tensor(train_labels), class_weights_all)
train_loader = DataLoader(train_data, batch_size=32, shuffle=True)
```
6. 定义模型和优化器,并进行训练
```
import torch.nn as nn
import torch.optim as optim
model = models.resnet50(pretrained=True)
model.fc = nn.Linear(model.fc.in_features, 2)
criterion = nn.CrossEntropyLoss(weight=class_weights)
optimizer = optim.SGD(model.parameters(), lr=0.001, momentum=0.9)
for epoch in range(10):
for inputs, labels, weights in train_loader:
optimizer.zero_grad()
outputs = model(inputs)
loss = criterion(outputs, labels)
loss.backward()
optimizer.step()
```
以上是一个示例代码,可以根据自己的数据集和模型进行相应的修改。
阅读全文