使用thchs30数据集训练CycleGAN模型实现语音转换并,将其封装起来的代码
时间: 2023-06-24 12:03:55 浏览: 115
以下是使用thchs30数据集训练CycleGAN模型实现语音转换并封装起来的代码。需要注意的是,该代码仅供参考,需要根据具体情况进行修改和调整。
```python
# 导入必要的库
import os
import numpy as np
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader
from torchvision import transforms
from cycle_gan import CycleGAN
from thchs30_dataset import Thchs30Dataset
# 设置超参数
batch_size = 16
num_workers = 4
learning_rate = 0.0002
num_epochs = 200
lambda_cycle = 10
lambda_identity = 5
# 设置数据集路径
data_dir = "thchs30/"
train_dir_A = os.path.join(data_dir, "train/A/")
train_dir_B = os.path.join(data_dir, "train/B/")
test_dir_A = os.path.join(data_dir, "test/A/")
test_dir_B = os.path.join(data_dir, "test/B/")
# 创建数据集和数据加载器
train_dataset_A = Thchs30Dataset(train_dir_A)
train_dataset_B = Thchs30Dataset(train_dir_B)
test_dataset_A = Thchs30Dataset(test_dir_A)
test_dataset_B = Thchs30Dataset(test_dir_B)
train_loader_A = DataLoader(train_dataset_A, batch_size=batch_size, shuffle=True, num_workers=num_workers)
train_loader_B = DataLoader(train_dataset_B, batch_size=batch_size, shuffle=True, num_workers=num_workers)
test_loader_A = DataLoader(test_dataset_A, batch_size=batch_size, shuffle=False, num_workers=num_workers)
test_loader_B = DataLoader(test_dataset_B, batch_size=batch_size, shuffle=False, num_workers=num_workers)
# 创建CycleGAN模型并定义优化器和损失函数
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
cycle_gan = CycleGAN().to(device)
optimizer_G = optim.Adam(cycle_gan.generator.parameters(), lr=learning_rate, betas=(0.5, 0.999))
optimizer_D_A = optim.Adam(cycle_gan.discriminator_A.parameters(), lr=learning_rate, betas=(0.5, 0.999))
optimizer_D_B = optim.Adam(cycle_gan.discriminator_B.parameters(), lr=learning_rate, betas=(0.5, 0.999))
criterion_GAN = nn.MSELoss().to(device)
criterion_cycle = nn.L1Loss().to(device)
criterion_identity = nn.L1Loss().to(device)
# 训练CycleGAN模型
for epoch in range(num_epochs):
cycle_gan.train()
for batch_idx, (real_A, real_B) in enumerate(zip(train_loader_A, train_loader_B)):
real_A = real_A.to(device)
real_B = real_B.to(device)
# 训练生成器G
optimizer_G.zero_grad()
# 计算生成的B以及重构的A
fake_B = cycle_gan.generator(real_A)
cycle_A = cycle_gan.generator(fake_B)
cycle_B = cycle_gan.generator(real_B)
# 计算生成的A以及重构的B
fake_A = cycle_gan.generator(real_B)
cycle_B = cycle_gan.generator(fake_A)
cycle_A = cycle_gan.generator(real_A)
# 计算对抗损失
pred_fake_A = cycle_gan.discriminator_A(fake_A)
pred_real_A = cycle_gan.discriminator_A(real_A)
loss_GAN_A = criterion_GAN(pred_fake_A, torch.ones_like(pred_fake_A).to(device))
pred_fake_B = cycle_gan.discriminator_B(fake_B)
pred_real_B = cycle_gan.discriminator_B(real_B)
loss_GAN_B = criterion_GAN(pred_fake_B, torch.ones_like(pred_fake_B).to(device))
# 计算循环一致性损失
loss_cycle_A = criterion_cycle(cycle_A, real_A) * lambda_cycle
loss_cycle_B = criterion_cycle(cycle_B, real_B) * lambda_cycle
# 计算身份损失
loss_identity_A = criterion_identity(cycle_gan.generator(real_A), real_A) * lambda_identity
loss_identity_B = criterion_identity(cycle_gan.generator(real_B), real_B) * lambda_identity
# 计算生成器总损失
loss_G = loss_GAN_A + loss_GAN_B + loss_cycle_A + loss_cycle_B + loss_identity_A + loss_identity_B
loss_G.backward()
optimizer_G.step()
# 训练判别器A
optimizer_D_A.zero_grad()
pred_real_A = cycle_gan.discriminator_A(real_A)
pred_fake_A = cycle_gan.discriminator_A(fake_A.detach())
loss_D_real_A = criterion_GAN(pred_real_A, torch.ones_like(pred_real_A).to(device))
loss_D_fake_A = criterion_GAN(pred_fake_A, torch.zeros_like(pred_fake_A).to(device))
loss_D_A = (loss_D_real_A + loss_D_fake_A) * 0.5
loss_D_A.backward()
optimizer_D_A.step()
# 训练判别器B
optimizer_D_B.zero_grad()
pred_real_B = cycle_gan.discriminator_B(real_B)
pred_fake_B = cycle_gan.discriminator_B(fake_B.detach())
loss_D_real_B = criterion_GAN(pred_real_B, torch.ones_like(pred_real_B).to(device))
loss_D_fake_B = criterion_GAN(pred_fake_B, torch.zeros_like(pred_fake_B).to(device))
loss_D_B = (loss_D_real_B + loss_D_fake_B) * 0.5
loss_D_B.backward()
optimizer_D_B.step()
# 每个epoch结束后计算测试集上的损失和准确率
cycle_gan.eval()
with torch.no_grad():
test_loss = 0.0
for real_A, real_B in zip(test_loader_A, test_loader_B):
real_A = real_A.to(device)
real_B = real_B.to(device)
fake_B = cycle_gan.generator(real_A)
cycle_A = cycle_gan.generator(fake_B)
cycle_B = cycle_gan.generator(real_B)
fake_A = cycle_gan.generator(real_B)
cycle_B = cycle_gan.generator(fake_A)
cycle_A = cycle_gan.generator(real_A)
loss_cycle_A = criterion_cycle(cycle_A, real_A) * lambda_cycle
loss_cycle_B = criterion_cycle(cycle_B, real_B) * lambda_cycle
loss_identity_A = criterion_identity(cycle_gan.generator(real_A), real_A) * lambda_identity
loss_identity_B = criterion_identity(cycle_gan.generator(real_B), real_B) * lambda_identity
test_loss += loss_cycle_A.item() + loss_cycle_B.item() + loss_identity_A.item() + loss_identity_B.item()
print("Epoch: {}, Test Loss: {:.6f}".format(epoch+1, test_loss))
# 保存模型
torch.save(cycle_gan.state_dict(), "cycle_gan.pth")
```
以上代码中,`CycleGAN`类和`Thchs30Dataset`类都是需要自己实现的,可以参考CycleGAN和Thchs30数据集的论文和官方实现进行实现。最后,使用训练好的模型对语音进行转换的代码如下:
```python
# 加载训练好的模型
cycle_gan = CycleGAN().to(device)
cycle_gan.load_state_dict(torch.load("cycle_gan.pth"))
# 定义转换函数
def convert(audio_path, output_path):
transform = transforms.Compose([
transforms.ToTensor(),
transforms.Normalize(mean=[0.5], std=[0.5])
])
audio = transform(audio_path)
audio = audio.unsqueeze(0).to(device)
fake_audio = cycle_gan.generator(audio)
fake_audio = fake_audio.squeeze(0).cpu().detach().numpy()
np.save(output_path, fake_audio)
# 进行语音转换
audio_path = "input.wav"
output_path = "output.npy"
convert(audio_path, output_path)
```
阅读全文