idea中用mapper reduce提取一个文本文件数据 分为5000及以上, 3000~5000, 3000以下
时间: 2024-03-23 07:41:56 浏览: 127
可以按照以下步骤使用Mapper和Reducer提取文本文件数据并按照要求分组:
1.定义Mapper类,读取文本文件中的每一行数据并将其划分为三个分组:5000及以上,3000-5000和3000以下。将每个分组作为键,将值设置为1。
2.定义Reducer类,计算每个分组中键出现的次数,并将其存储在一个哈希表中。
3.运行MapReduce作业,将Mapper和Reducer类传递给作业,并指定输入和输出路径。
下面是代码示例:
Mapper类:
```
public class TextMapper extends Mapper<LongWritable, Text, Text, IntWritable> {
private final static IntWritable one = new IntWritable(1);
private Text word = new Text();
public void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {
String line = value.toString().trim();
int num = Integer.parseInt(line);
if (num >= 5000) {
word.set("5000+");
context.write(word, one);
} else if (num >= 3000 && num < 5000) {
word.set("3000-5000");
context.write(word, one);
} else {
word.set("3000-");
context.write(word, one);
}
}
}
```
Reducer类:
```
public class TextReducer extends Reducer<Text, IntWritable, Text, IntWritable> {
private IntWritable result = new IntWritable();
public void reduce(Text key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {
int sum = 0;
for (IntWritable val : values) {
sum += val.get();
}
result.set(sum);
context.write(key, result);
}
}
```
运行MapReduce作业:
```
Configuration conf = new Configuration();
Job job = Job.getInstance(conf, "Text count");
job.setJarByClass(TextCount.class);
job.setMapperClass(TextMapper.class);
job.setCombinerClass(TextReducer.class);
job.setReducerClass(TextReducer.class);
job.setOutputKeyClass(Text.class);
job.setOutputValueClass(IntWritable.class);
FileInputFormat.addInputPath(job, new Path(args[0]));
FileOutputFormat.setOutputPath(job, new Path(args[1]));
System.exit(job.waitForCompletion(true) ? 0 : 1);
```
在上述代码中,输入路径为args[0],输出路径为args[1]。您可以将其替换为您自己的路径。
阅读全文