k-mean算法导入excel
时间: 2023-10-12 13:15:37 浏览: 124
要将K-mean算法应用于Excel数据,你需要使用VBA编写Excel宏。以下是一个简单的示例:
1. 打开Excel,按下Alt + F11打开VBA编辑器。
2. 在左侧的“项目导航”窗格中,右键单击你的Excel工作簿,并选择“插入模块”。
3. 在新模块中,复制并粘贴以下代码:
```
Sub KMeans()
Dim rngData As Range
Dim k As Integer
Dim rngCentroids As Range
Dim i As Integer
Dim nIterations As Integer
'设置输入数据范围和聚类数量
Set rngData = Range("A1:B10")
k = 3
'设置聚类中心的初始位置
Set rngCentroids = Range("C1:D3")
'进行K-mean聚类
nIterations = KMeans(rngData, k, rngCentroids)
'将聚类结果输出到工作表
For i = 1 To nIterations
Range("F1").Offset(i - 1, 0).Value = "Iteration " & i
Range("F1").Offset(i - 1, 1).Value = "Cluster"
Range("F1").Offset(i - 1, 2).Value = "Data Point"
Next i
i = 1
For Each pt In rngData
Range("F1").Offset(i, 2).Value = pt.Value
Range("F1").Offset(i, 1).Value = pt.Cluster
i = i + 1
Next pt
End Sub
Function KMeans(rngData As Range, k As Integer, rngCentroids As Range) As Integer
Dim centroids() As Variant
Dim clusters() As Variant
Dim nIterations As Integer
Dim i As Integer
Dim pt As Range
'将聚类中心的初始位置存储在一个数组中
ReDim centroids(k - 1, rngData.Columns.Count - 1)
For i = 0 To k - 1
centroids(i, 0) = rngCentroids.Offset(i, 0).Value
centroids(i, 1) = rngCentroids.Offset(i, 1).Value
Next i
'初始化每个数据点的聚类分配
ReDim clusters(rngData.Rows.Count - 1)
For Each pt In rngData
pt.Cluster = 0
Next pt
'重复聚类过程,直到收敛
Do
nIterations = nIterations + 1
'为每个数据点分配最近的聚类中心
For Each pt In rngData
pt.Cluster = NearestCentroid(pt.Value, centroids)
Next pt
'重新计算每个聚类的中心位置
For i = 0 To k - 1
MoveCentroid i, rngData, centroids
Next i
Loop Until Converged(rngData, clusters, centroids)
KMeans = nIterations
End Function
Function NearestCentroid(pt As Variant, centroids As Variant) As Integer
Dim minDist As Double
Dim i As Integer
Dim dist As Double
'找到距离数据点最近的聚类中心
minDist = Distance(pt, centroids(0))
NearestCentroid = 0
For i = 1 To UBound(centroids, 1)
dist = Distance(pt, centroids(i))
If dist < minDist Then
minDist = dist
NearestCentroid = i
End If
Next i
End Function
Sub MoveCentroid(idx As Integer, rngData As Range, centroids As Variant)
Dim sumX As Double
Dim sumY As Double
Dim count As Integer
Dim pt As Range
'计算聚类中所有数据点的平均位置
sumX = 0
sumY = 0
count = 0
For Each pt In rngData
If pt.Cluster = idx Then
sumX = sumX + pt.Value(1)
sumY = sumY + pt.Value(2)
count = count + 1
End If
Next pt
If count > 0 Then
centroids(idx, 0) = sumX / count
centroids(idx, 1) = sumY / count
End If
End Sub
Function Converged(rngData As Range, clusters As Variant, centroids As Variant) As Boolean
Dim pt As Range
Dim i As Integer
'检查是否所有数据点的聚类分配都不再发生变化
Converged = True
For Each pt In rngData
If pt.Cluster <> clusters(pt.Row - 1) Then
clusters(pt.Row - 1) = pt.Cluster
Converged = False
End If
Next pt
'检查是否所有聚类中心的位置都不再发生变化
For i = 0 To UBound(centroids, 1)
If Distance(centroids(i), centroids(i)) > 0.001 Then
Converged = False
End If
Next i
End Function
Function Distance(pt1 As Variant, pt2 As Variant) As Double
Dim dx As Double
Dim dy As Double
'计算两个数据点之间的欧几里得距离
dx = pt1(1) - pt2(1)
dy = pt1(2) - pt2(2)
Distance = Sqr(dx * dx + dy * dy)
End Function
```
4. 将你的Excel数据放在工作表上。
5. 在代码中,将以下行更改为适合你的数据范围:
```
Set rngData = Range("A1:B10") '输入数据的范围
Set rngCentroids = Range("C1:D3") '聚类中心的初始位置
```
6. 执行该宏,它将对你的数据进行K-mean聚类,并将结果输出到工作表中。
请注意,这只是一个简单的示例,你需要根据你的具体需求进行修改和扩展。
阅读全文