在IDEA实现正四面体的透视投影动态隐线算法java
时间: 2024-06-08 17:12:30 浏览: 190
正四面体是一个四面体,每个面都是一个等边三角形。要实现正四面体的透视投影动态隐线算法,可以按照以下步骤进行:
1. 定义正四面体的顶点坐标和面的顶点索引。
```java
double[][] vertices = {{-1, -1, -1}, {-1, -1, 1}, {-1, 1, -1}, {1, -1, -1}};
int[][] faces = {{0, 1, 2}, {1, 3, 2}, {0, 2, 3}, {0, 3, 1}};
```
2. 对正四面体进行透视投影。
```java
double f = 1.5; // 焦距
double[][] projected = new double[4][2];
for (int i = 0; i < 4; i++) {
double x = vertices[i][0];
double y = vertices[i][1];
double z = vertices[i][2];
projected[i][0] = f * x / (f - z);
projected[i][1] = f * y / (f - z);
}
```
3. 根据面的顶点索引,绘制正四面体的各个面。
```java
for (int i = 0; i < 4; i++) {
int[] face = faces[i];
double[] p1 = projected[face[0]];
double[] p2 = projected[face[1]];
double[] p3 = projected[face[2]];
// 绘制三角形面
// ...
}
```
4. 实现动态隐线算法。
动态隐线算法是指在绘制立体物体时,根据视点的位置和物体的几何形状,动态地确定哪些线段是可见的,哪些是被遮挡的。实现动态隐线算法需要使用 Z 缓冲算法。
```java
// 初始化 Z 缓冲区
double[][] zBuffer = new double[width][height];
for (int i = 0; i < width; i++) {
for (int j = 0; j < height; j++) {
zBuffer[i][j] = Double.NEGATIVE_INFINITY;
}
}
// 绘制三角形面并更新 Z 缓冲区
for (int i = 0; i < 4; i++) {
int[] face = faces[i];
double[] p1 = projected[face[0]];
double[] p2 = projected[face[1]];
double[] p3 = projected[face[2]];
// 计算三角形面的法向量
double[] normal = {0, 0, 0};
// ...
// 判断是否可见
boolean visible = normal[2] > 0;
if (visible) {
// 对三角形面进行裁剪
// ...
// 计算三角形面的重心坐标
double alpha = 0.5, beta = 0.5, gamma = 0.5;
// ...
// 计算三角形面的深度值
double z = alpha * p1[2] + beta * p2[2] + gamma * p3[2];
// 更新 Z 缓冲区
if (z > zBuffer[i][j]) {
zBuffer[i][j] = z;
// 绘制三角形面
// ...
}
}
}
```
这样就可以实现正四面体的透视投影动态隐线算法了。完整代码如下:
```java
import javax.swing.*;
import java.awt.*;
import java.awt.event.ActionEvent;
import java.awt.event.ActionListener;
public class Tetrahedron extends JPanel implements ActionListener {
private static final int WIDTH = 600;
private static final int HEIGHT = 600;
private static final double[][] VERTICES = {{-1, -1, -1}, {-1, -1, 1}, {-1, 1, -1}, {1, -1, -1}};
private static final int[][] FACES = {{0, 1, 2}, {1, 3, 2}, {0, 2, 3}, {0, 3, 1}};
private static final double F = 1.5;
private static final double[][] PROJECTED = new double[4][2];
private static final double[][] Z_BUFFER = new double[WIDTH][HEIGHT];
private static final Color[] COLORS = {Color.RED, Color.GREEN, Color.BLUE, Color.YELLOW};
private Timer timer;
private double angle;
public Tetrahedron() {
setPreferredSize(new Dimension(WIDTH, HEIGHT));
timer = new Timer(10, this);
timer.start();
}
@Override
protected void paintComponent(Graphics g) {
super.paintComponent(g);
// 绘制正四面体
for (int i = 0; i < 4; i++) {
double x = VERTICES[i][0];
double y = VERTICES[i][1];
double z = VERTICES[i][2];
PROJECTED[i][0] = F * x / (F - z) + WIDTH / 2;
PROJECTED[i][1] = F * y / (F - z) + HEIGHT / 2;
}
for (int i = 0; i < 4; i++) {
int[] face = FACES[i];
double[] p1 = PROJECTED[face[0]];
double[] p2 = PROJECTED[face[1]];
double[] p3 = PROJECTED[face[2]];
double[] normal = getNormal(p1, p2, p3);
boolean visible = normal[2] > 0;
if (visible) {
double alpha = 0.5, beta = 0.5, gamma = 0.5;
double z = alpha * VERTICES[face[0]][2] + beta * VERTICES[face[1]][2] + gamma * VERTICES[face[2]][2];
if (z > Z_BUFFER[(int) p1[0]][(int) p1[1]]) {
Z_BUFFER[(int) p1[0]][(int) p1[1]] = z;
g.setColor(COLORS[i]);
g.fillPolygon(new int[]{(int) p1[0], (int) p2[0], (int) p3[0]}, new int[]{(int) p1[1], (int) p2[1], (int) p3[1]}, 3);
}
}
}
}
private double[] getNormal(double[] p1, double[] p2, double[] p3) {
double[] v1 = {p2[0] - p1[0], p2[1] - p1[1], 0};
double[] v2 = {p3[0] - p1[0], p3[1] - p1[1], 0};
double[] normal = {v1[1] * v2[2] - v1[2] * v2[1], v1[2] * v2[0] - v1[0] * v2[2], v1[0] * v2[1] - v1[1] * v2[0]};
double len = Math.sqrt(normal[0] * normal[0] + normal[1] * normal[1] + normal[2] * normal[2]);
normal[0] /= len;
normal[1] /= len;
normal[2] /= len;
return normal;
}
@Override
public void actionPerformed(ActionEvent e) {
angle += 0.01;
double[][] rotateX = {{1, 0, 0}, {0, Math.cos(angle), -Math.sin(angle)}, {0, Math.sin(angle), Math.cos(angle)}};
double[][] rotateY = {{Math.cos(angle), 0, Math.sin(angle)}, {0, 1, 0}, {-Math.sin(angle), 0, Math.cos(angle)}};
double[][] rotateZ = {{Math.cos(angle), -Math.sin(angle), 0}, {Math.sin(angle), Math.cos(angle), 0}, {0, 0, 1}};
// 旋转正四面体
for (int i = 0; i < 4; i++) {
double x = VERTICES[i][0];
double y = VERTICES[i][1];
double z = VERTICES[i][2];
double[][] p = {{x}, {y}, {z}};
p = matrixMultiply(rotateX, p);
p = matrixMultiply(rotateY, p);
p = matrixMultiply(rotateZ, p);
VERTICES[i][0] = p[0][0];
VERTICES[i][1] = p[1][0];
VERTICES[i][2] = p[2][0];
}
// 清空 Z 缓冲区
for (int i = 0; i < WIDTH; i++) {
for (int j = 0; j < HEIGHT; j++) {
Z_BUFFER[i][j] = Double.NEGATIVE_INFINITY;
}
}
repaint();
}
private double[][] matrixMultiply(double[][] m1, double[][] m2) {
int row1 = m1.length;
int col1 = m1[0].length;
int col2 = m2[0].length;
double[][] result = new double[row1][col2];
for (int i = 0; i < row1; i++) {
for (int j = 0; j < col2; j++) {
for (int k = 0; k < col1; k++) {
result[i][j] += m1[i][k] * m2[k][j];
}
}
}
return result;
}
public static void main(String[] args) {
JFrame frame = new JFrame("Tetrahedron");
frame.setDefaultCloseOperation(JFrame.EXIT_ON_CLOSE);
frame.getContentPane().add(new Tetrahedron());
frame.pack();
frame.setLocationRelativeTo(null);
frame.setVisible(true);
}
}
```
阅读全文