def compute_shape_features(images): contour_areas = [] contour_perimeters = [] aspect_ratios = [] for img in images: contours, _ = cv2.findContours(img, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) contour = max(contours, key=cv2.contourArea) area = cv2.contourArea(contour) perimeter = cv2.arcLength(contour, True) x, y, w, h = cv2.boundingRect(contour) aspect_ratio = w / h if h != 0 else 0 contour_areas.append(area) contour_perimeters.append(perimeter) aspect_ratios.append(aspect_ratio) return np.array(contour_areas), np.array(contour_perimeters), np.array(aspect_ratios)的公牛
时间: 2023-12-13 19:03:48 浏览: 123
这段代码是用来计算一组图像的形状特征的。它通过使用OpenCV库的函数来找出每个图像的轮廓(contours),并计算轮廓的面积(contour_area)、周长(contour_perimeter)和宽高比(aspect_ratio)等特征。最后将这些特征存储在三个NumPy数组(contour_areas、contour_perimeters和aspect_ratios)中,并返回这些数组。这段代码的应用场景可能是对图像进行分类或者识别等任务,通过这些形状特征来区分不同的物体或者场景。
阅读全文