神经网络多分类代码怎么写
时间: 2023-11-05 21:05:17 浏览: 79
为您提供一个基本的神经网络多分类代码:
```python
import tensorflow as tf
# 准备数据集
train_dataset = tf.data.Dataset.from_tensor_slices((train_images, train_labels)).batch(batch_size)
test_dataset = tf.data.Dataset.from_tensor_slices((test_images, test_labels)).batch(batch_size)
# 定义模型
model = tf.keras.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)), # 将输入的图片矩阵48x48改成1D向量输入
tf.keras.layers.Dense(128, activation='relu'), # 全连接层1,128个节点,ReLU激活函数
tf.keras.layers.Dropout(0.2), # Dropout正则化层
tf.keras.layers.Dense(10) # 全连接层2,10个节点,输出分类评分
])
# 定义损失函数
loss_fn = tf.keras.losses.SparseCategoricalCrossentropy(from_logits=True)
# 设置优化器
optimizer = tf.keras.optimizers.Adam()
# 定义评估指标
train_loss = tf.keras.metrics.Mean(name='train_loss')
train_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='train_accuracy')
test_loss = tf.keras.metrics.Mean(name='test_loss')
test_accuracy = tf.keras.metrics.SparseCategoricalAccuracy(name='test_accuracy')
# 定义训练函数
@tf.function
def train_step(images, labels):
with tf.GradientTape() as tape:
predictions = model(images, training=True) # 在训练模式下进行预测
loss = loss_fn(labels, predictions)
gradients = tape.gradient(loss, model.trainable_variables)
optimizer.apply_gradients(zip(gradients, model.trainable_variables))
train_loss(loss)
train_accuracy(labels, predictions)
# 定义测试函数
@tf.function
def test_step(images, labels):
predictions = model(images, training=False) # 在测试模式下进行预测
t_loss = loss_fn(labels, predictions)
test_loss(t_loss)
test_accuracy(labels, predictions)
# 开始训练
for epoch in range(num_epochs):
train_loss.reset_states()
train_accuracy.reset_states()
test_loss.reset_states()
test_accuracy.reset_states()
for images, labels in train_dataset:
train_step(images, labels)
for test_images, test_labels in test_dataset:
test_step(test_images, test_labels)
print('Epoch {}, Loss: {}, Accuracy: {}, Test Loss: {}, Test Accuracy: {}'.format(epoch+1,
train_loss.result(),
train_accuracy.result()*100,
test_loss.result(),
test_accuracy.result()*100))
```
希望这个代码对您有所帮助!
阅读全文