yolo系列算法优缺点
时间: 2023-07-19 16:47:49 浏览: 195
7-机器学习系列(7):目标检测之--YOLO算法原理及python实现1
Yolo系列算法是一种基于深度学习的目标检测算法,其优缺点如下:
优点:
1. 实时性高:Yolo算法采用单阶段检测器的思想,将目标检测问题看作一个回归问题,一次前向计算即可完成检测,因此能够在实时性要求较高的场景中得到广泛应用。
2. 检测精度高:Yolo算法采用Anchor机制,同时对多个尺度的特征图进行检测,使得算法对于不同大小的目标具有较好的适应性,检测精度高于传统的基于区域的目标检测算法。
3. 算法结构简单:Yolo算法采用卷积神经网络实现目标检测,结构简单,易于训练和优化。
缺点:
1. 相对于基于区域的目标检测算法,Yolo算法对于小目标的检测效果不如理想,因为小目标在图像中只占据了很少的像素,难以被准确地检测到。
2. 由于采用了单阶段检测器的思想,Yolo算法对于目标的定位精度较低,误检和漏检现象较为常见。
3. Yolo算法对于目标形状的适应性相对较差,对于不规则形状的目标的检测效果不如基于区域的目标检测算法。
阅读全文