你的问题。那么,你的问题是关于car_train_0111.csv数据集的二手车价格分析,使用Pyspark进行实现的代码
时间: 2024-02-29 14:53:55 浏览: 70
好的,下面是一个使用Pyspark进行二手车价格分析的示例代码。假设数据集已经加载到了Spark的分布式内存中,代码的主要步骤包括:
1. 导入必要的库和模块
```python
from pyspark.sql.functions import *
from pyspark.ml.feature import VectorAssembler, StringIndexer, OneHotEncoder
from pyspark.ml.regression import RandomForestRegressor
from pyspark.ml.evaluation import RegressionEvaluator
```
2. 数据清洗和预处理
```python
# 数据清洗和预处理
df = df.dropDuplicates() # 去重
df = df.dropna() # 删除缺失值
# 特征选择
selected_features = ['brand', 'model', 'bodyType', 'fuelType', 'gearbox', 'kilometer', 'power', 'regionCode', 'year']
df = df.select(selected_features + ['price'])
# 数据类型转换
df = df.withColumn('kilometer', df['kilometer'].cast('double'))
df = df.withColumn('power', df['power'].cast('double'))
df = df.withColumn('year', df['year'].cast('double'))
```
3. 特征工程
```python
# 特征工程
categorical_cols = ['brand', 'model', 'bodyType', 'fuelType', 'gearbox']
numeric_cols = ['kilometer', 'power', 'regionCode', 'year']
indexers = [StringIndexer(inputCol=col, outputCol=col+'_index') for col in categorical_cols]
encoder = OneHotEncoder(inputCols=[col+'_index' for col in categorical_cols], outputCols=[col+'_onehot' for col in categorical_cols])
assembler = VectorAssembler(inputCols=[col+'_onehot' for col in categorical_cols] + numeric_cols, outputCol='features')
pipeline = Pipeline(stages=indexers + [encoder] + [assembler])
data = pipeline.fit(df).transform(df)
```
4. 建模和评估
```python
# 建模和评估
train_data, test_data = data.randomSplit([0.7, 0.3], seed=123)
rf = RandomForestRegressor(featuresCol='features', labelCol='price')
model = rf.fit(train_data)
predictions = model.transform(test_data)
evaluator = RegressionEvaluator(labelCol='price', predictionCol='prediction', metricName='rmse')
rmse = evaluator.evaluate(predictions)
print('Root Mean Squared Error (RMSE) on test data = {:.3f}'.format(rmse))
```
完整的代码示例如下所示:
```python
from pyspark.sql.functions import *
from pyspark.ml.feature import VectorAssembler, StringIndexer, OneHotEncoder
from pyspark.ml.regression import RandomForestRegressor
from pyspark.ml.evaluation import RegressionEvaluator
# 数据清洗和预处理
df = df.dropDuplicates() # 去重
df = df.dropna() # 删除缺失值
# 特征选择
selected_features = ['brand', 'model', 'bodyType', 'fuelType', 'gearbox', 'kilometer', 'power', 'regionCode', 'year']
df = df.select(selected_features + ['price'])
# 数据类型转换
df = df.withColumn('kilometer', df['kilometer'].cast('double'))
df = df.withColumn('power', df['power'].cast('double'))
df = df.withColumn('year', df['year'].cast('double'))
# 特征工程
categorical_cols = ['brand', 'model', 'bodyType', 'fuelType', 'gearbox']
numeric_cols = ['kilometer', 'power', 'regionCode', 'year']
indexers = [StringIndexer(inputCol=col, outputCol=col+'_index') for col in categorical_cols]
encoder = OneHotEncoder(inputCols=[col+'_index' for col in categorical_cols], outputCols=[col+'_onehot' for col in categorical_cols])
assembler = VectorAssembler(inputCols=[col+'_onehot' for col in categorical_cols] + numeric_cols, outputCol='features')
pipeline = Pipeline(stages=indexers + [encoder] + [assembler])
data = pipeline.fit(df).transform(df)
# 建模和评估
train_data, test_data = data.randomSplit([0.7, 0.3], seed=123)
rf = RandomForestRegressor(featuresCol='features', labelCol='price')
model = rf.fit(train_data)
predictions = model.transform(test_data)
evaluator = RegressionEvaluator(labelCol='price', predictionCol='prediction', metricName='rmse')
rmse = evaluator.evaluate(predictions)
print('Root Mean Squared Error (RMSE) on test data = {:.3f}'.format(rmse))
```
希望这个示例代码对你有所帮助。
阅读全文