下面这段用PostgreSQL语法写的SQL,还有哪些可以优化的地方?select source_name as "SOURCE_NAME",type_name as "TYPE_NAME",shift_date as "SHIFT_DATE",dd as "DD",task_title as "TASK_TITLE", task_content as "TASK_CONTENT",task_creator as "TASK_CREATOR",task_executor as "TASK_EXECUTOR",task_description as "TASK_DESCRIPTION", create_time as "CREATE_TIME",creatorid as "CREATORID",creatorname as "CREATORNAME",org_id as "ORG_ID",executorid as "EXECUTORID",executorname as "EXECUTORNAME", plan_start_time as "PLAN_START_TIME",plan_end_time as "PLAN_END_TIME",act_start_time as "ACT_SART_TIME",act_end_time as "ACT_END_TIME", gap_date as "GAP_DATE",task_status as "TASK_STATUS",1 as "TASK_QTY", (case when task_status='Finish' then '已结案' when task_status='Confirm'then '已结案' when gap_date>0 then '已逾期' --直播状态如下 --when gap_date>0 and gap_date<=1 then '已逾期' when gap_date>0.3 then '已结案' when gap_date<=0 and task_status='Going' then '进行中' when gap_date<=0 and task_status='Plan' then '计划中' end ) as "STATUS" -------union from ((select source_name,source_id,type_name,task_id,to_char(shift_date,'MM')||'月' as shift_date,task_title,task_content,task_status,task_creator, Plan_Start_Time,plan_end_time,act_start_time,(case when act_end_time is null then current_date else act_end_time end) as act_end_time, create_time,SUBSTR(TASK_EXECUTOR,1,8)AS TASK_EXECUTOR,'M'||TO_CHAR(SHIFT_DATE,'MM') as dd, round(date_part('epoch', (case when act_end_time is null then now() else act_end_time end) - plan_end_time))/60/60/24 as gap_date, TASK_DESCRIPTION from estone.r_est_task WHERE SITE = 'S01' --and to_char(shift_date,'yyyy')=to_char(current_date,'yyyy') --and extract(month from shift_date)>extract(month from current_date)-3 and shift_Date>to_date('20221031','yyyymmdd') ) union (select source_name,source_id,type_name,task_id,to_char(shift_date,'MM')||'月' as shift_date,task_title,task_content,task_status,task_creator, Plan_Start_Time,plan_end_time,act_start_time,(case when act_end_time is null then current_date else act_end_time end) as act_end_time, create_time,SUBSTR(TASK_EXECUTOR,1,8)AS TASK_EXECUTOR,'M'||TO_CHAR(SHIFT_DATE,'MM') as dd, round(date_part('epoch', (case when act_end_time is null then now() else act_end_time end) - create_time))/60/60/24 as gap_date, TASK_DESCRIPTION from estone.h_Est_Comp WHERE SITE = 'S01' and substr(pt_mfg_date,1,6)>=to_char(current_date-100,'yyyymm') --and to_number(substr(pt_mfg_date,5,2),'99G999D')>=extract(month from current_date)-3 --and to_char(shift_date,'yyyy')=to_char(current_date,'yyyy') --and extract(month from shift_date)>extract(month from current_date)-3 and shift_Date>to_date('20221031','yyyymmdd') ) )xx left join (select emp_no as CreatorID,emp_name as CreatorName from restricted.ausref_emp_data_ausz where substr(org_id,1,4)='MS01')yy on xx.task_creator = yy.CreatorID left join (select emp_no as ExecutorId,emp_name as ExecutorName,org_id from restricted.ausref_emp_data_ausz where substr(org_id,1,4)='MS01' )aa on xx.task_executor = aa.ExecutorId

时间: 2024-04-06 08:30:08 浏览: 79
有几个可以优化的地方: 1. 对于 estone.r_est_task 表和 estone.h_Est_Comp 表的 WHERE 子句,可以将常量字符串 'S01' 和日期 '20221031' 抽取出来,分别作为参数传入,这样可以避免每次执行时都要重新解析 WHERE 子句。 2. 对于 estone.h_Est_Comp 表,可以使用 BETWEEN 运算符来代替 substr(pt_mfg_date,1,6)>=to_char(current_date-100,'yyyymm'),这样可以让查询更易读,也更符合 SQL 的语义。 3. 在左连接时,可以使用 USING 子句代替 ON 子句,根据字段名自动匹配相同的列,这样可以让 SQL 查询更简洁。 4. 如果任务数量很大,可以考虑使用分页机制,对结果进行分页展示,避免一次性返回大量的数据,降低系统资源的压力。
相关问题

postgresql insert in to select

在PostgreSQL中,"INSERT INTO SELECT"是一种常见的SQL操作,也称为数据复制或数据导入,它允许你在一次查询中将查询结果插入到另一个表中。这种操作通常用于以下几个场景: 1. **数据填充**:当你有一个临时的结果集,希望将其完整地转移到另一个表中,而无需明确指定每一行。 2. **数据更新**:如果源查询的结果比目标表小,剩下的部分可以视为更新操作,即将新数据覆盖旧数据。 3. **创建备份**:快速创建一张表的副本,尤其是当源表很大时,通过这种方式可以避免大量数据传输。 基本语法如下: ```sql INSERT INTO table_name (column1, column2, ...) SELECT column1, column2, ... FROM source_table WHERE condition; ``` 这里的`table_name`是你想插入数据的目标表,`column1, column2, ...`是目标表的列名,`source_table`是提供数据的源表,`condition`是可选的筛选条件,只选择满足这个条件的数据进行插入。

postgresql 效能

在提高PostgreSQL数据库的效能方面,有一些方法可以考虑。首先,你可以使用pg_index和pg_stat_user_indexes视图来查找未使用的索引。通过运行以下查询,你可以找到未被使用的索引并删除它们: ``` SELECT indrelid::regclass AS tab_name, pi.indexrelid::regclass AS unused_index, idx_scan FROM pg_index pi, pg_stat_user_indexes psui WHERE pi.indexrelid = psui.indexrelid AND NOT indisunique AND idx_scan = 0; ``` 然后,你可以使用分区表的功能将大型的表分成子表。这样可以提高查询效率,尤其是当表的记录非常多时。通过将数据分散到多个子表中,可以减少查询的数据量,提高查询性能。你可以使用以下语法来创建一个分区表: ``` CREATE TABLE parent_table ( column1 data_type, column2 data_type, ... ) PARTITION BY RANGE (column1); ``` 最后,当你找到未使用的索引后,不要急于直接删除它们。你可以使用以下SQL语句将这些索引标记为无效,然后观察应用程序的行为,确保没有出现任何性能问题: ``` UPDATE pg_index SET indisvalid = false WHERE indexrelid::regclass::text IN (<Unused indexes name>); ``` 一旦确认没有问题,你可以使用`concurrently`关键字来并发地删除这些索引。这样可以避免对其他正在运行的查询造成影响。<span class="em">1</span><span class="em">2</span><span class="em">3</span> #### 引用[.reference_title] - *1* *3* [postgresql定位未使用的索引(unused index)](https://blog.csdn.net/weixin_43230594/article/details/123293465)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] - *2* [PostgreSQL之分区表(partitioning)](https://download.csdn.net/download/weixin_38729022/13700051)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v93^chatsearchT3_1"}}] [.reference_item style="max-width: 50%"] [ .reference_list ]
阅读全文

相关推荐

最新推荐

recommend-type

postgreSQL+pgpool+pg_rman高可用实施手册.docx

pgpool可以将读请求分配到多个从节点,写请求则发送至主节点,实现读写分离,提升系统处理能力。 #### 3.4. 限制超过限度的连接 pgpool可以通过配置限制同时连接数据库的客户端数量,防止过多连接导致服务器资源...
recommend-type

PostgreSQL慢SQL调优手册

**PostgreSQL 慢 SQL 调优手册** 1、**Create Index Directly** 创建合适的索引是优化查询性能的关键。为经常出现在 WHERE 子句中的列创建索引可以显著提升查询速度。例如,如果你的查询频繁地过滤某个特定列,如 ...
recommend-type

oracle中使用group by优化distinct

为了解决这个问题,我们可以考虑使用`GROUP BY`来优化`DISTINCT`。 首先,理解`DISTINCT`与`GROUP BY`的区别。`DISTINCT`用于返回不重复的行,而`GROUP BY`则用于对数据进行分组并计算每个组的聚合函数(如COUNT、...
recommend-type

PostgreSQL DBA认证 PGCE-E-092-中级SQL题目

在PostgreSQL中,ONLY关键词可以用在SELECT、DELETE和UPDATE命令中,用于指定要操作的表或视图。 SQL标识符和关键词 在PostgreSQL中,SQL标识符和关键词可以以字母、下划线或美元符号开头,但不能以数字开头。
recommend-type

SQL Server 2012链接服务器到PostgreSQL

在SQL Server 2012中,连接到外部数据源如PostgreSQL数据库是通过设置链接服务器来实现的。链接服务器允许SQL Server查询和操作非本地的数据,提供了与异构数据库系统交互的能力。以下是一个详细步骤,说明如何在SQL...
recommend-type

MATLAB实现小波阈值去噪:Visushrink硬软算法对比

资源摘要信息:"本资源提供了一套基于MATLAB实现的小波阈值去噪算法代码。用户可以通过运行主文件"project.m"来执行该去噪算法,并观察到对一张256x256像素的黑白“莱娜”图片进行去噪的全过程。此算法包括了添加AWGN(加性高斯白噪声)的过程,并展示了通过Visushrink硬阈值和软阈值方法对图像去噪的对比结果。此外,该实现还包括了对图像信噪比(SNR)的计算以及将噪声图像和去噪后的图像的打印输出。Visushrink算法的参考代码由M.Kiran Kumar提供,可以在Mathworks网站上找到。去噪过程中涉及到的Lipschitz指数计算,是基于Venkatakrishnan等人的研究,使用小波变换模量极大值(WTMM)的方法来测量。" 知识点详细说明: 1. MATLAB环境使用:本代码要求用户在MATLAB环境下运行。MATLAB是一种高性能的数值计算和可视化环境,广泛应用于工程计算、算法开发和数据分析等领域。 2. 小波阈值去噪:小波去噪是信号处理中的一个技术,用于从信号中去除噪声。该技术利用小波变换将信号分解到不同尺度的子带,然后根据信号与噪声在小波域中的特性差异,通过设置阈值来消除或减少噪声成分。 3. Visushrink算法:Visushrink算法是一种小波阈值去噪方法,由Donoho和Johnstone提出。该算法的硬阈值和软阈值是两种不同的阈值处理策略,硬阈值会将小波系数小于阈值的部分置零,而软阈值则会将这部分系数缩减到零。硬阈值去噪后的信号可能有更多震荡,而软阈值去噪后的信号更为平滑。 4. AWGN(加性高斯白噪声)添加:在模拟真实信号处理场景时,通常需要对原始信号添加噪声。AWGN是一种常见且广泛使用的噪声模型,它假设噪声是均值为零、方差为N0/2的高斯分布,并且与信号不相关。 5. 图像处理:该实现包含了图像处理的相关知识,包括图像的读取、显示和噪声添加。此外,还涉及了图像去噪前后视觉效果的对比展示。 6. 信噪比(SNR)计算:信噪比是衡量信号质量的一个重要指标,反映了信号中有效信息与噪声的比例。在图像去噪的过程中,通常会计算并比较去噪前后图像的SNR值,以评估去噪效果。 7. Lipschitz指数计算:Lipschitz指数是衡量信号局部变化复杂性的一个量度,通常用于描述信号在某个尺度下的变化规律。在小波去噪过程中,Lipschitz指数可用于确定是否保留某个小波系数,因为它与信号的奇异性相关联。 8. WTMM(小波变换模量极大值):小波变换模量极大值方法是一种小波分析技术,用于检测信号中的奇异点或边缘。该技术通过寻找小波系数模量极大值的变化来推断信号的局部特征。 9. 系统开源:该资源被标记为“系统开源”,意味着该MATLAB代码及其相关文件是可以公开访问和自由使用的。开源资源为研究人员和开发者提供了学习和实验的机会,有助于知识共享和技术发展。 资源的文件结构包括"Wavelet-Based-Denoising-MATLAB-Code-master",表明用户获取的是一套完整的项目文件夹,其中包含了执行小波去噪算法所需的所有相关文件和脚本。
recommend-type

管理建模和仿真的文件

管理Boualem Benatallah引用此版本:布阿利姆·贝纳塔拉。管理建模和仿真。约瑟夫-傅立叶大学-格勒诺布尔第一大学,1996年。法语。NNT:电话:00345357HAL ID:电话:00345357https://theses.hal.science/tel-003453572008年12月9日提交HAL是一个多学科的开放存取档案馆,用于存放和传播科学研究论文,无论它们是否被公开。论文可以来自法国或国外的教学和研究机构,也可以来自公共或私人研究中心。L’archive ouverte pluridisciplinaire
recommend-type

【交互特征的影响】:分类问题中的深入探讨,如何正确应用交互特征

![【交互特征的影响】:分类问题中的深入探讨,如何正确应用交互特征](https://img-blog.csdnimg.cn/img_convert/21b6bb90fa40d2020de35150fc359908.png) # 1. 交互特征在分类问题中的重要性 在当今的机器学习领域,分类问题一直占据着核心地位。理解并有效利用数据中的交互特征对于提高分类模型的性能至关重要。本章将介绍交互特征在分类问题中的基础重要性,以及为什么它们在现代数据科学中变得越来越不可或缺。 ## 1.1 交互特征在模型性能中的作用 交互特征能够捕捉到数据中的非线性关系,这对于模型理解和预测复杂模式至关重要。例如
recommend-type

c语言从链式队列 中获取头部元素并返回其状态的函数怎么写

在 C 语言中,如果你有一个链式队列的数据结构,通常它会包含两个指针,一个指向队首(front),一个指向队尾(rear)。以下是一个简单的链式队列头部元素获取函数的示例,假设 `Queue` 是你的链式队列结构体,并且已经包含了必要的成员变量: ```c typedef struct Queue { void* data; // 存储数据的指针 struct Queue* front; // 队首指针 struct Queue* rear; // 队尾指针 } Queue; // 获取头部元素并检查是否为空(如果队列为空,返回 NULL 或适当错误值) void*
recommend-type

易语言实现画板图像缩放功能教程

资源摘要信息:"易语言是一种基于中文的编程语言,主要面向中文用户,其特点是使用中文关键词和语法结构,使得中文使用者更容易理解和编写程序。易语言画板图像缩放源码是易语言编写的程序代码,用于实现图形用户界面中的画板组件上图像的缩放功能。通过这个源码,用户可以调整画板上图像的大小,从而满足不同的显示需求。它可能涉及到的图形处理技术包括图像的获取、缩放算法的实现以及图像的重新绘制等。缩放算法通常可以分为两大类:高质量算法和快速算法。高质量算法如双线性插值和双三次插值,这些算法在图像缩放时能够保持图像的清晰度和细节。快速算法如最近邻插值和快速放大技术,这些方法在处理速度上更快,但可能会牺牲一些图像质量。根据描述和标签,可以推测该源码主要面向图形图像处理爱好者或专业人员,目的是提供一种方便易用的方法来实现图像缩放功能。由于源码文件名称为'画板图像缩放.e',可以推断该文件是一个易语言项目文件,其中包含画板组件和图像处理的相关编程代码。" 易语言作为一种编程语言,其核心特点包括: 1. 中文编程:使用中文作为编程关键字,降低了学习编程的门槛,使得不熟悉英文的用户也能够编写程序。 2. 面向对象:易语言支持面向对象编程(OOP),这是一种编程范式,它使用对象及其接口来设计程序,以提高软件的重用性和模块化。 3. 组件丰富:易语言提供了丰富的组件库,用户可以通过拖放的方式快速搭建图形用户界面。 4. 简单易学:由于语法简单直观,易语言非常适合初学者学习,同时也能够满足专业人士对快速开发的需求。 5. 开发环境:易语言提供了集成开发环境(IDE),其中包含了代码编辑器、调试器以及一系列辅助开发工具。 6. 跨平台:易语言支持在多个操作系统平台编译和运行程序,如Windows、Linux等。 7. 社区支持:易语言有着庞大的用户和开发社区,社区中有很多共享的资源和代码库,便于用户学习和解决编程中遇到的问题。 在处理图形图像方面,易语言能够: 1. 图像文件读写:支持常见的图像文件格式如JPEG、PNG、BMP等的读取和保存。 2. 图像处理功能:包括图像缩放、旋转、裁剪、颜色调整、滤镜效果等基本图像处理操作。 3. 图形绘制:易语言提供了丰富的绘图功能,包括直线、矩形、圆形、多边形等基本图形的绘制,以及文字的输出。 4. 图像缩放算法:易语言实现的画板图像缩放功能中可能使用了特定的缩放算法来优化图像的显示效果和性能。 易语言画板图像缩放源码的实现可能涉及到以下几个方面: 1. 获取画板上的图像:首先需要从画板组件中获取到用户当前绘制或已经存在的图像数据。 2. 图像缩放算法的应用:根据用户的需求,应用适当的图像缩放算法对获取的图像数据进行处理。 3. 图像重新绘制:处理后的图像数据需要重新绘制到画板上,以实现缩放后的效果。 4. 用户交互:提供用户界面,让用户能够通过按钮、滑块等控件选择缩放比例和模式,以及触发缩放操作。 5. 性能优化:为了确保图像缩放操作流畅,需要考虑代码的执行效率和资源的合理利用。 在易语言社区中,用户可以根据自己的需求修改和扩展画板图像缩放源码,或者根据提供的API进一步开发更多高级图像处理功能,从而丰富软件的功能和用户体验。