pytorch快速训练ai作画模型的python代码
时间: 2023-09-14 20:05:54 浏览: 250
### 回答1:
在 PyTorch 中训练 AI 作画模型的基本流程如下:
1. 准备数据。首先,你需要准备一组带有训练图像和标签的数据集。
2. 定义模型。然后,你需要定义你的模型结构。这可以使用 PyTorch 的 `nn` 模块来实现。
3. 选择损失函数和优化器。为了训练模型,你需要选择一个损失函数和一个优化器。常用的损失函数包括交叉熵损失和均方误差损失。常用的优化器包括随机梯度下降 (SGD) 和 Adam。
4. 训练模型。现在,你可以使用训练数据开始训练模型了。在训练过程中,你需要将训练数据通过模型,计算损失,并使用优化器更新模型的参数。
5. 测试模型。一旦模型训练完成,你就可以使用测试数据来评估模型的性能。
以下是一个使用 PyTorch 训练 AI 作画模型的示例代码:
```python
import torch
import torch.nn as nn
import torch.optim as optim
# 准备数据
# 假设你已经准备好了训练数据和测试数据
# train_data 和 test_data 是图像和标签的元组的列
### 回答2:
import torch
import torch.nn as nn
import torch.optim as optim
from torchvision import datasets, transforms
# 定义模型结构
class AIModel(nn.Module):
def __init__(self):
super(AIModel, self).__init__()
self.conv1 = nn.Conv2d(1, 16, kernel_size=3, stride=1, padding=1)
self.conv2 = nn.Conv2d(16, 32, kernel_size=3, stride=1, padding=1)
self.fc1 = nn.Linear(32 * 7 * 7, 128)
self.fc2 = nn.Linear(128, 10)
def forward(self, x):
x = self.conv1(x)
x = nn.functional.relu(x)
x = nn.functional.max_pool2d(x, 2)
x = self.conv2(x)
x = nn.functional.relu(x)
x = nn.functional.max_pool2d(x, 2)
x = x.view(-1, 32 * 7 * 7)
x = self.fc1(x)
x = nn.functional.relu(x)
x = self.fc2(x)
return nn.functional.softmax(x, dim=1)
# 加载数据集
train_dataset = datasets.MNIST(root='./data', train=True, transform=transforms.ToTensor(), download=True)
test_dataset = datasets.MNIST(root='./data', train=False, transform=transforms.ToTensor())
train_loader = torch.utils.data.DataLoader(dataset=train_dataset, batch_size=64, shuffle=True)
test_loader = torch.utils.data.DataLoader(dataset=test_dataset, batch_size=64, shuffle=False)
# 初始化模型和优化器
model = AIModel()
optimizer = optim.Adam(model.parameters())
# 定义损失函数
loss_func = nn.CrossEntropyLoss()
# 设置训练参数
num_epochs = 10
# 开始训练
for epoch in range(num_epochs):
for i, (images, labels) in enumerate(train_loader):
optimizer.zero_grad()
outputs = model(images)
loss = loss_func(outputs, labels)
loss.backward()
optimizer.step()
if (i + 1) % 100 == 0:
print('Epoch [{}/{}], Step [{}/{}], Loss: {:.4f}'.format(epoch+1, num_epochs, i+1, len(train_loader), loss.item()))
# 评估模型
model.eval()
with torch.no_grad():
correct = 0
total = 0
for images, labels in test_loader:
outputs = model(images)
_, predicted = torch.max(outputs.data, 1)
total += labels.size(0)
correct += (predicted == labels).sum().item()
print('Accuracy of the model on the 10000 test images: {} %'.format(100 * correct / total))
# 保存模型
torch.save(model.state_dict(), 'ai_model.pt')
### 回答3:
import torch
import torch.nn.functional as F
from torch import nn
from torch.utils.data import DataLoader
from torchvision.datasets import MNIST
from torchvision.transforms import ToTensor, Normalize, Compose
from torchvision.utils import make_grid
import matplotlib.pyplot as plt
# 定义生成器神经网络模型
class Generator(nn.Module):
def __init__(self, latent_dim, img_shape):
super(Generator, self).__init__()
self.latent_dim = latent_dim
self.img_shape = img_shape
self.fc = nn.Linear(latent_dim, 256)
self.fc2 = nn.Linear(256, 512)
self.fc3 = nn.Linear(512, 1024)
self.fc4 = nn.Linear(1024, img_shape[0] * img_shape[1])
def forward(self, x):
x = F.leaky_relu(self.fc(x), 0.2)
x = F.leaky_relu(self.fc2(x), 0.2)
x = F.leaky_relu(self.fc3(x), 0.2)
x = torch.tanh(self.fc4(x))
x = x.view(x.size(0), *self.img_shape)
return x
# 定义训练函数
def train(generator, latent_dim, num_epochs, batch_size, lr, device):
# 加载MNIST数据集
transform = Compose([ToTensor(), Normalize((0.5,), (0.5,))])
dataset = MNIST(root='MNIST/', train=True, transform=transform)
dataloader = DataLoader(dataset, batch_size=batch_size, shuffle=True)
# 定义优化器和损失函数
optimizer = torch.optim.Adam(generator.parameters(), lr=lr)
criterion = nn.BCELoss()
for epoch in range(num_epochs):
for i, (real_imgs, _) in enumerate(dataloader):
real_imgs = real_imgs.to(device)
# 生成随机噪声
noise = torch.randn(batch_size, latent_dim).to(device)
# 计算生成图片并计算损失
gen_imgs = generator(noise)
loss = criterion(gen_imgs, real_imgs)
# 反向传播和优化
optimizer.zero_grad()
loss.backward()
optimizer.step()
# 每200个batch打印一次损失
if i % 200 == 0:
print(f'Epoch [{epoch}/{num_epochs}], Step [{i}/{len(dataloader)}], Loss: {loss.item()}')
# 设置超参数
latent_dim = 100
img_shape = (1, 28, 28)
num_epochs = 10
batch_size = 100
lr = 0.0002
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 创建生成器模型并将其移至GPU
generator = Generator(latent_dim, img_shape).to(device)
# 开始训练
train(generator, latent_dim, num_epochs, batch_size, lr, device)
# 生成并显示一些样本图片
with torch.no_grad():
noise = torch.randn(64, latent_dim).to(device)
gen_imgs = generator(noise).detach().cpu()
img_grid = make_grid(gen_imgs, nrow=8, normalize=True)
plt.imshow(img_grid.permute(1, 2, 0))
plt.axis('off')
plt.show()
阅读全文